The mitochondrial enzyme, ornithine transcarbamylase (OTC) from rat liver was expressed in Spodoptera frugiperda (Sf) insect cells using a baculovirus vector. When insect cells were infected with recombinant Autographica californica nuclear polyhedrosis virus (AcNPV) containing a cDNA encoding the precursor form of OTC (pOTC) inserted into the polyhedrin gene, they expressed catalytically active enzyme at levels of approximately 2.5 micrograms/10(6) cells. About 25% of the active enzyme was a novel, partially processed product of pOTC containing four extra amino acids at the amino terminus of OTC. The most abundant protein found in mitochondria from infected insect cells was the normal processing intermediate iOTC, which contains 8 extra amino acids at the amino terminus of OTC. Whereas this species, present at 20 micrograms/10(6) cells, was not active and did not bind the transition-state analog inhibitor of OTC, delta-PALO, the novel processing product did bind and was affinity-purified, along with mature OTC, on a PALO-affinity column. The OTC expressed in insect cells was located in the same compartment of the mitochondrion as in rat liver. The incomplete processing occurred in vitro in both noninfected and infected insect cells. The high level of expression of iOTC using the baculoviral expression system provides a means of overproducing an obligatory intermediate in the mitochondrial import process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.1991.10.443 | DOI Listing |
Neotrop Entomol
January 2025
Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Emory University, Atlanta, GA 30322.
To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Plant Science, McGill University, Montréal, Canada.
The Lepidopteran pest Trichoplusia ni and the parasitoid wasp Trichogramma brassicae represent a fascinating biological system, important for sustainable agricultural practices but challenging to observe. We present a nondestructive method based on micro-CT scanning technology (CT: computed tomography) for visualizing the internal parts of caterpillar embryos and of emerging parasitoids from infected eggs. Traditional methods of microscopic observation of the opaque egg contents require staining or dissection.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands.
The emergence of new viruses and the spread of existing pathogens necessitate efficient vaccine production methods. The baculovirus expression vector system (BEVS) is an efficient and scalable system for subunit and virus-like particle vaccine production and gene therapy vectors. However, current production processes are often limited to low cell concentrations (1-4 × 10 cells/mL) in fed-batch mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!