Deep brain stimulation artifact in needle electromyography.

Arch Neurol

Department of Neurology, Virginia Commonwealth University, PO Box 980599, Richmond, VA 23298-0599, USA.

Published: August 2010

Download full-text PDF

Source
http://dx.doi.org/10.1001/archneurol.2010.183DOI Listing

Publication Analysis

Top Keywords

deep brain
4
brain stimulation
4
stimulation artifact
4
artifact needle
4
needle electromyography
4
deep
1
stimulation
1
artifact
1
needle
1
electromyography
1

Similar Publications

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

Background And Purpose: Magnetic Resonance Imaging is widely used to assess disease burden in multiple sclerosis (MS). This study aimed to evaluate the effectiveness of a commercially available k-nearest neighbors (k-NN) software in quantifying white matter lesion (WML) burden in MS. We compared the software's WML quantification to expert radiologists' assessments.

View Article and Find Full Text PDF

Background: Hypertension is a serious chronic disease that can significantly lead to various cardiovascular diseases, affecting vital organs such as the heart, brain, and kidneys. Our goal is to predict the risk of new onset hypertension using machine learning algorithms and identify the characteristics of patients with new onset hypertension.

Methods: We analyzed data from the 2011 China Health and Nutrition Survey cohort of individuals who were not hypertensive at baseline and had follow-up results available for prediction by 2015.

View Article and Find Full Text PDF

A systematic review of deep learning in MRI-based cerebral vascular occlusion-based brain diseases.

Neuroscience

January 2025

Department of Computer Engineering, Faculty of Engineering, Igdir University, 76000, Igdir, Turkey. Electronic address:

Neurological disorders, including cerebral vascular occlusions and strokes, present a major global health challenge due to their high mortality rates and long-term disabilities. Early diagnosis, particularly within the first hours, is crucial for preventing irreversible damage and improving patient outcomes. Although neuroimaging techniques like magnetic resonance imaging (MRI) have advanced significantly, traditional methods often fail to fully capture the complexity of brain lesions.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!