Background: Adaptive immunity and innate immunity play important roles in atherogenesis. Invariant chain (CD74) mediates antigen-presenting cell antigen presentation and T-cell activation. This study tested the hypothesis that CD74-deficient mice have reduced numbers of active T cells and resist atherogenesis.

Methods And Results: In low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, CD74 deficiency (Ldlr(-/-)Cd74(-/-)) significantly reduced atherosclerosis and CD25(+)-activated T cells in the atheromata. Although Ldlr(-/-)Cd74(-/-) mice had decreased levels of plasma immunoglobulin (Ig) G1, IgG2b, and IgG2c against malondialdehyde-modified LDL (MDA-LDL), presumably as a result of impaired antigen-presenting cell function, Ldlr(-/-)Cd74(-/-) mice showed higher levels of anti-MDA-LDL IgM and IgG3. After immunization with MDA-LDL, Ldlr(-/-)Cd74(-/-) mice had lower levels of all anti-MDA-LDL Ig isotypes compared with Ldlr(-/-) mice. As anticipated, only Ldlr(-/-) splenocytes responded to in vitro stimulation with MDA-LDL, producing Th1/Th2 cytokines. Heat shock protein-65 immunization enhanced atherogenesis in Ldlr(-/-) mice, but Ldlr(-/-) Cd74(-/-) mice remained protected. Compared with Ldlr(-/-) mice, Ldlr(-/-)Cd74(-/-) mice had higher anti-MDA-LDL autoantibody titers, fewer lesion CD25(+)-activated T cells, impaired release of Th1/Th2 cytokines from antigen-presenting cells after heat shock protein-65 stimulation, and reduced levels of all plasma anti-heat shock protein-65 Ig isotypes. Cytofluorimetry of splenocytes and peritoneal cavity cells of MDA-LDL- or heat shock protein-65-immunized mice showed increased percentages of autoantibody-producing marginal zone B and B-1 cells in Ldlr(-/-)Cd74(-/-) mice compared with Ldlr(-/-) mice.

Conclusions: Invariant chain deficiency in Ldlr(-/-) mice reduced atherosclerosis. This finding was associated with an impaired adaptive immune response to disease-specific antigens. Concomitantly, an unexpected increase in the number of innate-like peripheral B-1 cell populations occurred, resulting in increased IgM/IgG3 titers to the oxidation-specific epitopes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927799PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.891887DOI Listing

Publication Analysis

Top Keywords

ldlr-/- mice
20
ldlr-/-cd74-/- mice
20
mice
14
antigen-presenting cell
12
invariant chain
12
compared ldlr-/-
12
heat shock
12
shock protein-65
12
mice reduced
8
ldlr-/-
8

Similar Publications

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.

View Article and Find Full Text PDF

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

Background: Disorders of glucose and lipid metabolism, such as obesity, diabetes mellitus, or hypercholesterolemia, can cause serious complications, reduce quality of life, and lead to increased premature mortality. Olivetol, a natural compound, could be proposed as a promising therapeutic agent for preventing, treating, or alleviating metabolic complications of such pathological conditions.

Methods: In this study, the researchers conducted a broad parallel investigation of olivetol's effects on metabolic state and gut microbiota functionality in mouse models of alimentary obesity, diabetes mellitus type 1 and 2, and hypercholesterolemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!