Colloidal coatings, such as paint, are all around us. However, we know little about the mechanics of the film-forming process because the composition and properties of drying coatings vary dramatically in space and time. To surmount this challenge, we extend traction force microscopy to quantify the spatial distribution of all three components of the stress at the interface of two materials. We apply this approach to image stress near the tip of a propagating interface crack in a drying colloidal coating and extract the stress intensity factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930552 | PMC |
http://dx.doi.org/10.1073/pnas.1005537107 | DOI Listing |
Sensors (Basel)
January 2025
Airworthiness Division, Air Force Institute of Technology, 01-494 Warsaw, Poland.
The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.
View Article and Find Full Text PDFGeorgian Med News
November 2024
2Department of Conservative Dentistry, College of Dentistry, University of Mosul, Iraq.
Background: Resin composites and dental adhesives are widely used to restore carious teeth. A relatively new category of the dental adhesives, the universal adhesives (UAs) is considered user friendly because of its simplicity to use and compatibility with any adhesive strategy. However, the adhesive interface created by these adhesives is highly susceptible to cracking after polymerization which in turn facilitates the initiation of secondary caries.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Material Science and Engineering, "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, Hebei University of Technology, Tianjin 300130 China. Electronic address:
The development of high-performance sodium-ion batteries (SIBs) is crucial to meeting the growing demand for low-cost, sustainable energy storage alternatives to lithium-ion batteries (LIBs). However, achieving stable cycling performance in SIBs is challenging, particularly with tin (Sn) foil anodes, which suffer from issues like sodium trapping and structural degradation due to significant volume changes during sodiation and desodiation. In this study, we investigate the electrochemo-mechanical behavior of Sn foil anodes, focusing on the mechanisms of sodium trapping and structural evolution that impair battery performance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Battery Cell Engineering, General Motors, Warren, Michigan 48093, United States.
The SiO/graphite composite is recognized as a promising anode material for lithium-ion batteries (LIBs), owing to the high theoretical capacity of SiO combined with the excellent stability of graphite. However, the inherent disadvantage of volume expansion in silicon-based anodes places significant challenges on the solid electrolyte interphase (SEI) and severely degrades the electrochemical performance. Rational formulation of electrolyte, including its additives, is crucial in accommodating and optimizing the composition of the SEI and enhancing the cell performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!