Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A hallmark of airways in patients with cystic fibrosis (CF) is highly refractory, chronic infections by several opportunistic bacterial pathogens. A recent study demonstrated that acidified sodium nitrite (A-NO(2)(-)) killed the highly refractory mucoid form of Pseudomonas aeruginosa, a pathogen that significantly compromises lung function in CF patients (S. S. Yoon et al., J. Clin. Invest. 116:436-446, 2006). Therefore, the microbicidal activity of A-NO(2)(-) (pH 6.5) against the following three major CF pathogens was assessed: P. aeruginosa (a mucoid, mucA22 mutant and a sequenced nonmucoid strain, PAO1), Staphylococcus aureus USA300 (methicillin resistant), and Burkholderia cepacia, a notoriously antibiotic-resistant organism. Under planktonic, anaerobic conditions, growth of all strains except for P. aeruginosa PAO1 was inhibited by 7.24 mM (512 μg ml(-1) NO(2)(-)). B. cepacia was particularly sensitive to low concentrations of A-NO(2)(-) (1.81 mM) under planktonic conditions. In antibiotic-resistant communities known as biofilms, which are reminiscent of end-stage CF airway disease, A-NO(2)(-) killed mucoid P. aeruginosa, S. aureus, and B. cepacia; 1 to 2 logs of cells were killed after a 2-day incubation with a single dose of ∼15 mM A-NO(2)(-). Animal toxicology and phase I human trials indicate that these bactericidal levels of A-NO(2)(-) can be easily attained by aerosolization. Thus, in summary, we demonstrate that A-NO(2)(-) is very effective at killing these important CF pathogens and could be effective in other infectious settings, particularly under anaerobic conditions where bacterial defenses against the reduction product of A-NO(2)(-), nitric oxide (NO), are dramatically reduced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976131 | PMC |
http://dx.doi.org/10.1128/AAC.00379-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!