Presynaptic imidazoline receptors (R(i-pre)) are found in the sympathetic axon terminals of animal and human cardiovascular systems, and they regulate blood pressure by modulating the release of peripheral noradrenaline (NA). The cellular mechanism of R(i-pre)-induced inhibition of NA release is unknown. We, therefore, investigated the effect of R(i-pre) activation on voltage-dependent Ca(2+) channels in rat superior cervical ganglion (SCG) neurons, using the conventional whole-cell patch-clamp method. Cirazoline (30 μM), an R(i-pre) agonist as well as an α-adrenoceptor (R(α)) agonist, decreased Ca(2+) currents (I(Ca)) by about 50% in a voltage-dependent manner with prepulse facilitation. In the presence of low-dose rauwolscine (3 μM), which blocks the α(2)-adrenoceptor (R(α2)), cirazoline still inhibited I(Ca) by about 30%, but prepulse facilitation was significantly attenuated. This inhibitory action of cirazoline was almost completely prevented by high-dose rauwolscine (30 μM), which blocks R(i-pre) as well as R(α2). In addition, pretreatment with LY320135 (10 μM), another R(i-pre) antagonist, in combination with low-dose rauwolscine (3 μM), also blocked the R(α2)-resistant effect of cirazoline. Addition of guanosine-5-O-(2-thiodiphosphate) (2 mm) to the internal solutions significantly attenuated the action of cirazoline. However, pertussis toxin (500 ng ml(1)) did not significantly influence the inhibitory effect of cirazoline. Moreover, cirazoline (30 μM) suppressed M current in SCG neurons cultured overnight. Finally, omega-conotoxin (omega-CgTx) GVIA (1 μM) obstructed cirazoline-induced current inhibition, and cirazoline (30 μM) significantly decreased the frequency of action potential firing in a partly reversible manner. This cirazoline-induced inhibition of action potential firing was almost completely occluded in the presence of omega-CgTx. Taken together, our results suggest that activation of R(i-pre) in SCG neurons reduced N-type I(Ca) in a pertussis toxin- and voltage-insensitive pathway, and this inhibition attenuated repetitive action potential firing in SCG neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1113/expphysiol.2010.053355DOI Listing

Publication Analysis

Top Keywords

scg neurons
16
cirazoline μm
12
rauwolscine μm
12
action potential
12
potential firing
12
presynaptic imidazoline
8
rat superior
8
superior cervical
8
cervical ganglion
8
cirazoline
8

Similar Publications

Identification of a postnatal period of interdependent neurogenesis and apoptosis in peripheral neurons.

Biol Open

November 2024

Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Article Synopsis
  • During neurogenesis, an initially excessive number of neurons are formed in the nervous system, but many are later eliminated through a process called apoptosis, or programmed cell death.
  • This elimination is influenced by targets of innervation, which produce neurotrophic factors that help maturing neurons survive and grow as they connect with these targets.
  • Research in mice shows that while neurogenesis and apoptosis typically complete within the first few days after birth, both processes continue significantly longer, indicating neurogenesis may play a role in replacing neurons lost during synaptic refinement.
View Article and Find Full Text PDF

Rat Sympathetic Neuron Calcium Channels Are Insensitive to Gabapentin.

Pharmaceuticals (Basel)

September 2024

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA.

The gabapentenoids such as gabapentin (GP) and pregabalin are approved for the treatment of chronic pain, but their utility is limited by persistent side effects. These adverse effects result from GPs affecting many types of neurons and muscle cells, not just the pain-sensing neurons that are the intended targets. We have recently discovered a type of peripheral neuron, rat sympathetic neurons from the superior cervical ganglion (SCG), that is uniquely insensitive to GP effects.

View Article and Find Full Text PDF

An autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia.

View Article and Find Full Text PDF

HDAC5 controls a hypothalamic STAT5b-TH axis, the sympathetic activation of ATP-consuming futile cycles and adult-onset obesity in male mice.

Mol Metab

December 2024

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine & Health, Technische Universität München, München, Germany. Electronic address:

With age, metabolic perturbations accumulate to elevate our obesity burden. While age-onset obesity is mostly driven by a sedentary lifestyle and high calorie intake, genetic and epigenetic factors also play a role. Among these, members of the large histone deacetylase (HDAC) family are of particular importance as key metabolic determinants for healthy ageing, or metabolic dysfunction.

View Article and Find Full Text PDF

We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!