The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/cwq106 | DOI Listing |
CAZymes ( C arbohydrate A ctive En Zymes ) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are extremely important to research in human health, nutrition, gut microbiome, bioenergy, plant disease, and global carbon recycling. Current CAZyme annotation tools are all based on sequence similarity.
View Article and Find Full Text PDFSci One Health
July 2024
Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang Uygur Autonomous Region, China.
Background: Camels, known as the enduring "ships of the desert," host a complex gut microbiota that plays a crucial role in their survival in extreme environments. However, amidst the fascinating discoveries about the camel gut microbiota, concerns about antibiotic resistance have emerged as a significant global challenge affecting both human and animal populations. Indeed, the continued use of antibiotics in veterinary medicine has led to the widespread emergence of antibiotic-resistant bacteria, which has worsened through gene transfer.
View Article and Find Full Text PDFBMC Microbiol
December 2024
State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.
View Article and Find Full Text PDFFront Microbiol
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India. Electronic address:
Xylose, a key constituent of the heterogeneous hemicellulose polymer, occurs in lignocellulosic biomass and forms xylan polymers through β-1,4 glycosidic linkages. The β-1,4-xylosidase enzyme was isolated from Pseudopedobacter saltans (PsGH43) to find an effective enzyme with enhanced activity to depolymerize xylo-oligosaccharides. β-1,4-xylosidase belongs to the GH43 family as classified in the Carbohydrate-Active Enzyme Database (CAZy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!