Developing cortex generates endogenous activity that modulates the formation of functional units, but how this activity is altered to support mature function is poorly understood. Using recordings from the visual cortex of preterm human infants and neonatal rats, we report a "bursting" period of visual responsiveness during which the weak retinal output is amplified by endogenous network oscillations, enabling a primitive form of vision. This period ends shortly before delivery in humans and eye opening in rodents with an abrupt switch to the mature visual response. The switch is causally linked to the emergence of an activated state of continuous cortical activity dependent on the ascending neuromodulatory systems involved in arousal. This switch is sensory system specific but experience independent and also involves maturation of retinal processing. Thus, the early development of visual processing is governed by a conserved, intrinsic program that switches thalamocortical response properties in anticipation of patterned vision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946625 | PMC |
http://dx.doi.org/10.1016/j.neuron.2010.07.015 | DOI Listing |
Compr Rev Food Sci Food Saf
January 2025
Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
The demand for meat alternatives based on ingredients sourced from nonanimal materials with equivalent quality of muscle tissue is increasing. As more consumers switch to meat alternatives, a growing body of research has investigated the tenderness and related texture attributes in plant-based meats to increase consumer acceptance. A deeper understanding of tenderness including the differences and similarities between meat and meat alternatives is crucial to developing products that meet consumer expectations, as it directly influences consumer acceptance.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.
Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
The ( C677T gene polymorphism is associated with neurological disorders and schizophrenia. Patients diagnosed with schizophrenia and schizoaffective disorder and controls ( 134) had data collected for risk factors, molecular and neuro-sensory variables, symptoms, and functional outcomes. Promising gene variant-related predictive biomarkers were identified for diagnosis by Receiver Operating Characteristics and for illness duration by linear regression.
View Article and Find Full Text PDFBrain Sci
November 2024
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.
Background: Transferring learned manipulations to new manipulation tasks has enabled humans to realize thousands of dexterous object manipulations in daily life. Two-digit grasp and three-digit grasp manipulations require different fingertip forces, and our brain can switch grasp types to ensure good performance according to motor memory. We hypothesized that several brain areas contribute to the execution of the new type of motor according to the motor memory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!