Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
E6 associated protein is an E3 ubiquitin ligase encoded by the gene Ube3a. Deletion or loss of function of the maternally inherited allele of Ube3a leads to Angelman syndrome. In the present study, we show that maternal loss of Ube3a (Ube3a(m-/p+)) in the mouse model leads to motor deficits that could be attributed to the dysfunction of the nigrostriatal pathway. The number of tyrosine hydroxylase positive neurons in the substantia nigra was significantly reduced in Ube3a(m-/p+) mice as compared to the wild type counterparts. The Ube3a(m-/p+) mice performed poorly in behavioural paradigms sensitive to nigrostriatal dysfunction. Even though the tyrosine hydroxylase staining was apparently the same in the striatum of both genotypes, the presynaptic and postsynaptic proteins were significantly reduced in Ube3a(m-/p+) mice. These findings suggest that the abnormality in the nigrostriatal pathway along with the cerebellum produces the observed motor dysfunctions in Ube3a(m-/p+) mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2010.08.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!