A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell-derived matrix enhances osteogenic properties of hydroxyapatite. | LitMetric

Cell-derived matrix enhances osteogenic properties of hydroxyapatite.

Tissue Eng Part A

Division of Oral Biology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.

Published: January 2011

AI Article Synopsis

  • The study evaluated how well hydroxyapatite (HA) scaffolds combined with extracellular matrix (ECM) derived from rat cells support bone healing.
  • The research showed that the HA-ECM constructs improved cellular growth and significantly enhanced bone repair in rats compared to HA alone, despite increased inflammation markers.
  • The findings suggest that the ECM can effectively mimic natural bone properties and may help create better materials for tissue engineering in bone repair.

Article Abstract

The study aimed to evaluate osteogenic properties of hydroxyapatite (HA) scaffold combined with extracellular matrix (ECM) derived in vitro from rat primary calvarial osteoblasts or dermal fibroblasts. The cellular viability, and the ECM deposited onto synthetic HA microparticles were assessed by MTT, Glycosaminoglycan, and Hydroxyproline assays as well as immunohistochemistry and scanning electron microscopy after 21 days of culture. The decellularized HA-ECM constructs were implanted in critical-sized calvarial defects of Sprague-Dawley rats, followed by bone repair and local inflammatory response assessments by histomorphometry and immunohistochemistry at 12 weeks postoperatively. We demonstrated that HA supported cellular adhesion, growth, and ECM production in vitro, and the HA-ECM constructs significantly enhanced calvarial bone repair (p<0.05, Mann-Whitney U-test), compared with HA alone, despite the significantly increased number of CD68+ macrophages, and foreign body giant cells (p<0.05, Mann-Whitney U-test). Selective accumulation of bone sialoprotein, osteopontin, and periostin was observed at the tissue-HA interfaces. In conclusion, in vitro-derived ECM mimics the native bone matrix, enhances the osteogenic properties of the HA microparticles, and might modulate the local inflammatory response in a bone repair-favorable way. Our findings highlight the ability to produce functional HA-ECM constructs for bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2010.0175DOI Listing

Publication Analysis

Top Keywords

osteogenic properties
8
properties hydroxyapatite
8
ha-ecm constructs
8
bone repair
8
cell-derived matrix
4
matrix enhances
4
enhances osteogenic
4
hydroxyapatite study
4
study aimed
4
aimed evaluate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!