This work aimed to obtain information on the water dispersibility of a 1:1 stoichiometric polyelectrolyte nanogel complex (SPENC). We synthesized a cationic polyelectrolyte nanogel (CPENG) composed of a cross-linked copolymer of 1-vinylimidazole and N-isopropylacrylamide. SPENC was then prepared at 25 degrees C from the mixing of equimolar amounts (based on fixed charges) of CPENG and potassium poly(vinyl alcohol) sulfate, which were dissolved in an aqueous solution without adding salt and at pH 3.0. We carefully observed at 25 degrees C the reduction of the imidazole-based cationic charge in the CPENG component of SPENC as a function of pH. Dynamic and static light scattering techniques were employed in combination with electrophoretic light scattering experiments. The amount of cationic charge in the SPENC was estimated from the potentiometric titration data of CPENG. It was found that, during the charge reduction process, the complex underwent aggregation, followed by a phase separation. The aggregation started at about 25% of the charge reduction (i.e., at pH approximately = 4.9), and the phase separation took place when almost half of the charge was eliminated (at pH approximately = 5.5). However, the phase-separated complexes became water-soluble again when about 90% of the charge was eliminated (pH approximately = 6.6). By colloid titration, the dissociated free polyanions were not detected in the aqueous SPENC solution before the phase separation but were detected in the complex-redispersed solution. When the pH (9.0) of the redispersion was slowly decreased to the original level (pH 3.0) by the gradual addition of HCl so as to cause again the phase separation, an intraparticle complex was reformed, the physical quantities of which were close to those of the initial SPENC. These findings clearly indicate that the whole and a part (segment) of the complexed polyanions undergoes dissociation-association reactions on the surface of a SPENC particle, depending on the ionization state of the cationic gel component. As a result, these reactions seem to be a key factor for the water dispersibility of the SPENC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la101852b | DOI Listing |
Phys Rev Lett
December 2024
Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.
View Article and Find Full Text PDFAnal Chem
January 2025
Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences at the Microscale, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.
Front Immunol
January 2025
Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
Background: An increasing body of evidence indicates that dysregulation of liquid-liquid phase separation (LLPS) in cellular processes is implicated in the development of diverse tumors. Nevertheless, the association between LLPS and the prognosis, as well as the tumor immune microenvironment, in individuals with colon cancer remains poorly understood.
Methods: We conducted a comprehensive evaluation of the LLPS cluster in 1010 colon cancer samples from the TCGA and GEO databases, utilizing the expression profiles of LLPS-related prognostic differentially expressed genes (DEGs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!