The flocculation and solid/liquid separation of four well-characterized kaolinites (2 well, 2 poorly crystallized) have been studied for comparison of surface structure (SEM), aggregate structure during flocculation (cryo-SEM), settling rate, and bed density (with raking). It is shown that major differences in these properties are largely due to crystallinity and consequent surface structure of the extensive (larger dimension "basal") face. Well-crystallized kaolinites, with higher Hinckley indices and lower aspect ratios, have relatively smooth, flat basal surfaces and thicker edge planes promoting both effective initial bridging flocculation (largely edge-edge) and structural rearrangement to face-face during the raking process. This results in faster settling rates and more compact bed structures. Poorly crystallized kaolinites, with low Hinckley indices and high aspect ratios, exhibit ragged, stepped structures of the extensive face with a high proportion of nanosized islands forming cascade-like steps (i.e., multiple edges) contributing up to 30% of the specific surface area and providing flocculant adsorption sites (hydroxyl groups) across this extensive face. This leads to bridging flocculation taking place on both edge and extensive ("basal") planes, producing low-density edge-face structures during flocculation which leads to slow settling rates and poor bed densities. In particular, the complex surface morphology of the poorly crystallized kaolinites resists the transformation of edge-face structures to dense face-face structures under shear force introduced by raking. This results in low sediment density for poorly crystallized kaolinites. The studies suggest that the main influence on settling rates and bed densities of kaolinites in mineral tailings is likely to be related to the crystallinity and surface morphology of the kaolinite. They also suggest that interpretation of kaolinite behavior based on models of a flat (001) basal plane and edge sites only at the particle boundaries is not likely to be adequate for many real, less-crystallized kaolinites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la100088n | DOI Listing |
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.
The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China.
The atomic force microscope (AFM) image will be inclined and bent due to the tilt angle between the probe and the sample surface. When the least squares fitting method is used to correct the horizontal distortion of the AFM image, the shape structure that is lower or higher than the sample base will affect the final fitting correction result. In view of the limitations of existing methods and the diversity of AFM images, an AFM image level distortion correction method based on automatic feature marking is proposed.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
SnO thin films were deposited on Si substrates by radio frequency (RF) magnetron sputtering technique, and the effects of different sputtering power (60-90 W) on the structural, surface morphological, and electrical properties of the film were investigated with XRD, Raman, AFM, SEM, and fore point probe. The deposited SnO film at lower RF was amorphous, while well-defined intense XRD signals at higher RF power indicated significant improvement in crystalline nature. E and A vibrating modes related to SnO were clearly observed in the Raman spectra.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!