Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es903729a | DOI Listing |
Mater Horiz
January 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.
View Article and Find Full Text PDFACS Nano
January 2025
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.
Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Solid-state Li-ion batteries are recognized as highly promising energy storage devices due to their ability to overcome issues related to the inferior cycle life and potential risks of traditional liquid Li-ion batteries. However, developing solid-state electrolytes with fast Li-ion conductivity continues to be a major challenge. In this study, we present a family of quasi-solid-state electrolytes (QSSEs) synthesized by confining liquid electrolytes within a N-rich porous carbon sponge, exhibiting superior Li-ion conduction for solid-state battery applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!