The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.

J Biomed Mater Res A

Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China.

Published: September 2010

Titanium oxide nanotube layers by anodization have received considerable attention in biomedical application. Previous studies have demonstrated increased osteoblast (bone-forming cell) adhesion and function on nanotube layers compared with unanodized counterparts. More recently, one study showed amorphous TiO(2) nanotube diameter determined cell fate. The anatase phase is known to be much more beneficial for bone growth than amorphous phase, so there is increasing demand to explore the response of osteoblast on anatase phase TiO(2) nanotube layers. For this reason, we evaluated MC3T3-E1 preosteoblast behavior on different diameter nanotube layers with anatase phase. The results showed that the diameter of 20-70 nm provided an effective length scale for cell adhesion, alkaline phosphatase activity, and mineralization. However, cell adhesion, alkaline phosphatase activity, and mineralization were severely impaired on nanotube layers with 100-120 nm. Interestingly, the filopodia seemed not spread into the nanotubular and like extending anatase nanotube walls, where there may be higher numbers of atoms at the surface compared to the nanotubular architecture. To our surprise, the proliferation rates of cells cultured on anatase nanotube layers increased with increasing tube diameter from 20 to 120 nm, which may be attributed to different length and nanometer-scale roughness of the nanotube layers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32687DOI Listing

Publication Analysis

Top Keywords

nanotube layers
32
tio2 nanotube
12
cell adhesion
12
anatase phase
12
nanotube
10
layers
8
mc3t3-e1 preosteoblast
8
adhesion alkaline
8
alkaline phosphatase
8
phosphatase activity
8

Similar Publications

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Lobelia-Inspired Photothermal Storage Flexible Film for Efficient Deicing.

Small Methods

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.

The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.

View Article and Find Full Text PDF

Direct analysis of engineered iron nanotubes and platinum nanorods: A challenge for single particle inductively coupled plasma mass spectrometry.

Talanta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:

The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!