Purpose: While the benefits of ascorbic acid (vitamin C, ascorbate) as an essential nutrient are well established, its effects on tumor cells and in tumor treatment are controversial. In particular, conflicting data exist whether ascorbate may increase the cytotoxic effects of antineoplastic drugs or may rather exert adverse effects on drug sensitivity during cancer treatment. Findings are further obscured regarding the distinction between ascorbate and dehydroascorbate (DHA). Thus, the purpose of this study was to evaluate and directly compare the cytotoxic efficacy of ascorbate compared to DHA, and to analyse if ascorbate at pharmacological concentrations affects the efficacy of antineoplastic agents in prostate carcinoma cells.

Methods: We directly compare the effects of ascorbate (supplied as 'Pascorbin solution for injection') and DHA on tumor cell viability, and determine IC(50) values for various cell lines. At concentrations well below the IC(50), ascorbate effects on cell proliferation and cell cycle are analysed. We furthermore determine changes in cellular sensitivity towards various cytostatic drugs upon pre-treatment of cells with ascorbate.

Results: We demonstrate higher therapeutic efficacy of ascorbate over DHA in various cell lines, independent of cell line-specific differences in ascorbate sensitivity, and identify the extracellular generation of H(2)O(2) as critical mechanism of ascorbate action. We furthermore show that, in addition to pro-apoptotic effects described previously, ascorbate treatment already at concentrations well below the IC(50) exerts anti-proliferative effects on tumor cells. Those are based on interference with the cell cycle, namely by inducing a G(0)/G(1) arrest. Pre-treatment of tumor cells with ascorbate leads to increased cellular sensitivity towards Docetaxel, Epirubicin, Irinotecan and 5-FU, but not towards Oxaliplatin and Vinorelbin. For Docetaxel and 5-FU, a linear correlation between this sensitizing effect and the ascorbate dosage is observed.

Conclusions: The redox-active form of vitamin C, ascorbate, shows therapeutic efficacy in tumor cells. These antitumor effects of ascorbate are mainly based on its extracellular action and, in addition to the induction of apoptosis, also include an anti-proliferative effect by inducing cell cycle arrest. Furthermore, ascorbate treatment specifically enhances the cytostatic potency of certain chemotherapeutics, which implicates therapeutic benefit during tumor treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082037PMC
http://dx.doi.org/10.1007/s00280-010-1418-6DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
ascorbate
17
cell cycle
16
effects
9
cell
9
exerts anti-proliferative
8
anti-proliferative effects
8
effects cell
8
tumor
8
cytostatic drugs
8

Similar Publications

Cuproplasia and cuproptosis, two sides of the coin.

Cancer Commun (Lond)

January 2025

Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China.

Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy.

View Article and Find Full Text PDF

The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy.

Cell Prolif

January 2025

Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.

Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Background: To correlate between immunohistochemical expression of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and natural killer (NK) cells with the AJCC 8th edition TNM staging system and other disease-modifying clinico-pathological variables.

Methods: The representative histology sections of tumor invasive margin (IM) and tumor core (TC) were selected according to the International Immuno-Oncology Biomarker Working Group and were subjected to immunohistochemistry with antibodies for TILs (CD3, CD8, FOXP3), NK Cells (CD57), TAMs (CD68, CD163) and pan-leukocyte marker (CD45). Histo-immuno-density-intensity (HIDI) scoring was calculated as a product of the proportion and intensity of staining.

View Article and Find Full Text PDF

Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms.

Bioelectromagnetics

January 2025

Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.

Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!