Germinable soil seed banks and the restoration potential of abandoned cropland on the Chinese hilly-gullied loess plateau.

Environ Manage

Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Published: September 2010

Poor vegetation cover is generally considered to be a major factor causing soil erosion on the Loess Plateau in China. It has been argued that tree planting restoration is ineffective, and natural re-vegetation is an alternative ecological solution for restoring abandoned cropland and controlling soil erosion. The aims of this study were to investigate the characteristics of soil seed banks and to assess the natural restoration potential of abandoned cropland in the hilly-gullied Loess Plateau. The soil seed bank was identified by the germination method with the soil samples, which were collected at four sampling times (April, August, and October 2005 and August 2006) from 12 plots abandoned 3-30 years prior to sampling. The seed bank densities of all of the samples in the 0-10 cm soil layer varied from 1,067 ± 225 to 14,967 ± 1,606 seeds m(-2). Fifty-one species (24 annual and 27 perennial species) belonging to 18 families were identified, and 39% of these species belonged to the families Compositae and Gramineae. The pioneer species Artemisia scoparia dominated the seed bank, with an average seed density of 3,722 seeds m(-2), and accounted for 74.4% of the seeds in the bank. The local dominant species (such as Lespedeza davurica, Artemisia gmelinii, Bothriochloa ischaemun and Stipa bungeana) of the later succession stages also existed at densities varying from 17 to 1, 383 seeds m(-2). The combination of soil seed bank characteristics, reproductive traits of the species, the specific landscape conditions indicates that the potential to restoring the abandoned croplands in the hilly-gullied Loess Plateau via natural re-vegetation could be substantial.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-010-9535-xDOI Listing

Publication Analysis

Top Keywords

soil seed
16
loess plateau
16
seed bank
16
abandoned cropland
12
hilly-gullied loess
12
seeds m-2
12
seed banks
8
restoration potential
8
potential abandoned
8
soil erosion
8

Similar Publications

Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.

View Article and Find Full Text PDF

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

Assessment of tree-associated atypical myopathy risk factors in Acer pseudoplatanus (sycamore) seeds and leaves.

Equine Vet J

January 2025

Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, The Royal Veterinary College, London, UK.

Background: Sycamore tree-derived hypoglycin A (HGA) toxin causes atypical myopathy (AM), an acute, equine pasture-associated rhabdomyolysis but incidence fluctuates.

Objectives: Investigate whether tree or environmental factors influence HGA concentration in sycamore material and are associated with AM relative risk.

Study Design: Retrospective and experimental prospective study.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!