Single chains of conjugated polymers e.g. MEH-PPV (poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) have become interesting objects for single molecule spectroscopy (SMS) studies. However, most of the experiments so far were performed without full awareness of the isolation status of the polymer chains in host matrices. We used steady-state and time-resolved fluorescence methods and 2D polarization single molecule imaging technique to unravel the isolation/aggregation status of MEH-PPV in spin-coated films prepared at different conditions. It turned out that a sample showing isolated bright spots in fluorescence images could be obtained in a very broad concentration range of MEH-PPV when toluene was used as a solvent and PMMA as a matrix. If the MEH-PPV concentration was not sufficiently low, a substantial fraction of the fluorescence spots should be assigned to individual nano-aggregates rather than truly isolated chains of the polymer. Contrary to single aggregates, truly isolated MEH-PPV chains showed blue-shifted emission spectra, mono-exponential fluorescence decay dynamics with relatively long lifetimes (0.4-1.2 ns), and high polarization anisotropy. We argue that insufficient control of the concentration in the published SMS studies of MEH-PPV resulted in incorrect assigning of some spectroscopic properties of single aggregates to isolated MEH-PPV chains. We believe this to be the main origin of discrepancies among the published data in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c001120gDOI Listing

Publication Analysis

Top Keywords

conjugated polymers
8
single molecule
8
sms studies
8
single aggregates
8
aggregates isolated
8
isolated meh-ppv
8
meh-ppv chains
8
single
7
meh-ppv
7
chains
5

Similar Publications

Tandem construction of flavone-bridged conjugated porous polymers for photosynthesis of 2,3-dihydrobenzofurans.

Chem Commun (Camb)

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.

Conjugated porous polymers bearing flavone moieties (FL-CPPs) were synthesized a tandem approach. The carbonylative Sonogashira coupling in tandem with cyclization guided the assembling of building blocks with the accompanied production of flavone skeletons. The FL-CPPs were proved to be efficient metal-free photocatalysts for the [3+2] cycloaddition of phenols with olefins under the irradiation of visible-light.

View Article and Find Full Text PDF

The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!