We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H(2)O splitting proceeds more rapidly than H(2) oxidation, while on Pt, H(2) oxidation proceeds more rapidly than H(2)O splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c003581e | DOI Listing |
Heliyon
December 2024
School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK.
ACS Appl Mater Interfaces
January 2025
Department of Materials Science & Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States.
Mixed ionic/electronic conductors (MIECs) are essential components of solid-state electrochemical devices, such as solid oxide fuel/electrolysis cells. For efficient performance, MIECs are typically nanostructured, to enhance the reaction kinetics. However, the effect of nanostructuring on MIEC chemo-mechanical coupling and transport properties, which also impact cell durability and efficiency, has not yet been well understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Solid oxide cells (SOCs) are promising energy-conversion devices due to their high efficiency under flexible operational modes. Yet, the sluggish kinetics of fuel electrodes remain a major obstacle to their practical applications. Since the electrochemically active region only extends a few micrometers, manipulating surface architecture is vital to endow highly efficient and stable fuel electrodes for SOCs.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518057, China. Electronic address:
The application of solid oxide electrolysis cells (SOECs) for high-temperature CO reduction reaction (CORR) is constrained by the electrochemical activity and stability of the cathode materials. In this study, a series of iron-based perovskite oxides, designed by systematically varying A-site configurational entropy, are investigated as cathode materials for the CORR. Experimental results reveal that these high-entropy materials, derived from LaSrFeO (LSF), exhibit high electrocatalytic activity and durability.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
Solid oxide ionic conductors with high ionic conductivity are highly desired for oxide-based electrochemical and energy devices, such as solid oxide fuel cells. However, achieving high ionic conductivity at low temperatures, particularly for practical out-of-plane transport applications, remains a challenge. In this study, leveraging the emergent interphase strain methodology, we achieve an exceptional low-temperature out-of-plane ionic conductivity in NaBiTiO (NBT)-MgO nanopillar-array films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!