Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

Green Chem

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706. USA; ; Tel: (+1) 608-265-6288.

Published: January 2010

The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914337PMC
http://dx.doi.org/10.1039/c0gc00106fDOI Listing

Publication Analysis

Top Keywords

aerobic oxidation
16
oxidation reactions
12
palladium-catalyzed aerobic
8
development safe
4
safe scalable
4
scalable continuous-flow
4
continuous-flow methods
4
methods palladium-catalyzed
4
aerobic
4
oxidation
4

Similar Publications

An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.

View Article and Find Full Text PDF

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.

View Article and Find Full Text PDF

Antioxidant taurine inhibits chondrocyte ferroptosis through upregulation of OGT/Gpx4 signaling in osteoarthritis induced by anterior cruciate ligament transection.

J Adv Res

January 2025

Department of Rehabilitation Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China. Electronic address:

Objective: The aim of this study was to investigate the potential molecular mechanisms by which taurine protects against cartilage degeneration.

Methods: The anterior cruciate ligament transection (ACLT) surgery was used to construct an animal model of osteoarthritis (OA). Metabolomics was used to identify characteristic metabolites in osteoarthritic chondrocytes.

View Article and Find Full Text PDF

Interplay of acidic residues in the proton channel of E. coli cytochrome bd-I oxidase to promote oxygen reduction and NO release.

Biochim Biophys Acta Bioenerg

January 2025

Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France; Institut universitaire de France (IUF), France. Electronic address:

The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!