The increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite (alpha-Fe(2)O(3)) NPs and to determine the particle size effects on the adsorption behaviors. Cellular impairment was also investigated and compared. Hematite NPs were synthesized as part of this study with a discrete size distribution and uniform morphology examined by dynamic light scattering (DLS) and confirmed by transmission electron microscopy (TEM). Caco-2 cells were cultured as a model epithelium to mirror human intestinal cells and used to evaluate the impacts of the exposure to NPs by measuring transepithelial electrical resistance (TEER). Cell surface disruption, localization and translocation of NPs through the cells were analyzed with immunocytochemical staining and confocal microscopy. Results showed that hematite NPs had mean diameters of 26, 53, 76 and 98 nm and were positively charged with minor aggregation in the buffer solution. Adsorption of the four sizes of NPs on cells reached equilibrium within approximately 5 min but adsorption kinetics were found to be size-dependent. The adsorption rates expressed as mg m(-2) min(-1) were greater for large NPs (76 and 98 nm) than those for small NPs (26 and 53 nm). However, adsorption rates, expressed in units of m(-2) min(-1), were much greater for small NPs than large ones. After the adsorption equilibrium was reached, the adsorbed mass of NPs on a unit area of cells was calculated and showed no significant size dependence. Longer exposure time (>3 h) induced adverse cellular effects as indicated by the drop in TEER compared to the control cells without the exposure to NPs. NPs initially triggered a dynamic reorganization and detachment of microvilli structures on Caco-2 cell surfaces. Following this impact, the drop in TEER occurred more significantly, particularly for the exposure to 26 nm NPs, which was consistent with the observations with confocal microscopy that the junctions were more severely disrupted by 26 nm NPs than other sizes. In conclusion, this paper demonstrates the interactions at the ultrastructural level from initial surface adsorption of NPs upon cells, to the subsequent microvilli reorganization, membrane penetration and the disruption of adherens junction and provides the fundamental information on size effects on NP behavior which is often poorly addressed for in vitro cytotoxicity studies of NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/35/355103DOI Listing

Publication Analysis

Top Keywords

nps
17
caco-2 cells
12
exposure nps
12
nps cells
12
cells
9
adsorption
8
particle size
8
cell surfaces
8
size effects
8
hematite nps
8

Similar Publications

Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.

Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.

View Article and Find Full Text PDF

Introduction: Monogenic diseases can be diagnosed before birth. Systemic fetal administration of nanoparticles (NPs) grants therapeutic access to developing stem cell populations impacted by these classes of disease. Delivery of editing reagents in these NPs administered before birth has yielded encouraging results in preclinical mouse models of monogenic diseases.

View Article and Find Full Text PDF

Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish () are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages.

View Article and Find Full Text PDF

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.

View Article and Find Full Text PDF

NPs play a pivotal role in preventing unintended pregnancies in the US. This article provides a comprehensive update on emergency contraception (EC) trends, emphasizing the persistent challenge of reducing unintended pregnancies-a key health priority in the Healthy People 2030 initiative. Despite a declining trend in unintended pregnancy rates from 2010 to 2019, national goals have not been met, and healthcare disparities persist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!