A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lifibrol as a model compound for a novel lipid-lowering mechanism of action. | LitMetric

Lifibrol as a model compound for a novel lipid-lowering mechanism of action.

J Cardiovasc Pharmacol Ther

Department of Clinical Pharmacology, University of Bonn, Bonn, Germany.

Published: December 2010

Lifibrol is a potent lipid-lowering drug with an unknown mechanism of action. We investigated its effects on lipoprotein and sterol metabolism in normocholesterolemic male participants. Seven participants were treated for 4 weeks with 600 mg/d lifibrol and 9 with 40 mg/d pravastatin in a double-blind randomized parallel-group trial. Kinetic studies were performed at baseline and under acute and chronic treatment. Turnover of apolipoprotein B-100 was investigated with endogenous stable-isotope labeling, and kinetic parameters were derived by multicompartmental modeling. Lathosterol and cholesterol metabolism were investigated using mass isotopomer distribution analysis (MIDA) after [1-(13)C]acetate labeling. Carbon metabolism was investigated by calculating the total isotope incorporation into newly formed sterols and measuring the disposal of acetate by (13)CO(2) breath analysis. Total- and low-density lipoprotein (LDL) cholesterol decreased by 18% and 27% under lifibrol and by 17% and 28% under pravastatin, respectively, whereas very-low-density lipoprotein (VLDL) cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol did not change. Very-low-density lipoprotein apoB fractional synthesis and production increased under lifibrol but remained unchanged under pravastatin. Low-density lipoprotein apoB fractional synthesis and production increased under pravastatin but remained unchanged under lifibrol. Mass isotopomer distribution analysis indicated that both drugs decrease endogenous sterol synthesis after acute administration, but pravastatin had more powerful effects. Carbon-13 appearance in breath was higher during pravastatin than during lifibrol treatment. Mass isotopomer distribution analysis and carbon metabolism analysis indicated compartmentalization at the site of sterol synthesis, thus suggesting differential effects of the 2 drugs. Although having comparable lipid-lowering properties, lifibrol seems to have a mechanism of action distinct from that of statins. Lifibrol could serve as a model compound for the development of new lipid-lowering agents.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1074248410371100DOI Listing

Publication Analysis

Top Keywords

mechanism action
12
mass isotopomer
12
isotopomer distribution
12
distribution analysis
12
lifibrol
9
model compound
8
metabolism investigated
8
carbon metabolism
8
low-density lipoprotein
8
very-low-density lipoprotein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!