Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water.

J Hazard Mater

Agency for the Assessment and Application of Technology, M.H. Thamrin No. 8, Jakarta 10340, Indonesia.

Published: November 2010

We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L(-1), each: 25 mg L(-1)). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h(-1), whereas by the combined photocatalytic-biological treatment was 10.5 mg h(-1). After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO(2) particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.07.050DOI Listing

Publication Analysis

Top Keywords

photocatalytic treatment
20
titanium dioxide
16
biological photocatalytic
12
treatment
12
separation reuse
12
tap water
12
biological treatment
12
2-chlorophenol 24-dichlorophenol
8
dioxide separation
8
combined biological-photocatalytic
8

Similar Publications

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (BiTiO, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance.

View Article and Find Full Text PDF

T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision.

View Article and Find Full Text PDF

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!