A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of tacrolimus on the excitatory synaptic transmission between the parallel fibers and pyramidal cells in the rat dorsal cochlear nucleus. | LitMetric

Aim: The immunosuppressive drug tacrolimus has several effects on the central nervous system. Besides its protective effect in hearing deficiencies, it is also considered to be able to cause tinnitus. In the present work, we attempted to describe its effects on a characteristic synapse of the auditory system that may be involved in the pathogenesis of tinnitus.

Methods/materials: Slices of the dorsal cochlear nucleus (200 microm thick) were prepared from 9- to 14-day-old Wistar rats. In response to stimulation targeting the superficial layer of the nucleus, we recorded excitatory postsynaptic currents (EPSCs) developing in the cell bodies of the pyramidal neurons using whole-cell voltage clamps. Inhibitory synaptic activity was inhibited by the application of bicuculline and strychnine. Short-term plasticity was investigated using high-frequency stimulation (50 Hz). Unambiguous identification of the investigated neurons was ensured by employing biocytin in the pipette solution, which allowed the confocal reconstruction of the cells after the functional measurements. A concentration of 1 micromol/L tacrolimus was applied extracellularly.

Results: Tacrolimus effectively and reversibly inhibited glutamatergic neurotransmission in the investigated synapse from -145 +/- 26 pA to -55 +/- 15 pA (n = 7; P = .00928). In contrast, EPSC amplitudes without failures were not significantly reduced (from -153 +/- 26 pA to -131 +/- 23 pA) in the presence of tacrolimus, but there were increased failure numbers of synaptic transmission. These data suggested that application of tacrolimus produced a combined pre- and postsynaptic inhibition.

Conclusion: Tacrolimus affected short-term synaptic plasticity in the rat dorsal cochlear nucleus. It was also capable of inhibiting the glutamatergic neurotransmission. These effects suggested that tacrolimus may have neuroprotective effects in this structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.transproceed.2010.05.013DOI Listing

Publication Analysis

Top Keywords

dorsal cochlear
12
cochlear nucleus
12
tacrolimus
8
synaptic transmission
8
rat dorsal
8
glutamatergic neurotransmission
8
tacrolimus excitatory
4
synaptic
4
excitatory synaptic
4
transmission parallel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!