A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion. | LitMetric

Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion.

Sci Total Environ

Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon, 305-343, Republic of Korea.

Published: October 2010

The collection of particles in CO(2)-enriched environments has long been important for the capture of CO(2) in order to clean gases via oxy-fuel combustion. We here report on the collection characteristics of fine and ultrafine particles using an electrostatic precipitator (ESP) in a CO(2)-enriched atmosphere. In order to understand the characteristics of particle collection in CO(2)-rich gas mixtures, the ionic properties of a CO(2)-enriched atmosphere was also investigated. The electrical mobility of the ions in a CO(2)-enriched atmosphere was found to be about 0.56 times that found in a conventional air atmosphere, due to the higher mass of CO(2) gas compared to that of air. The low electrical mobility of ions resulted in a low corona current under CO(2)-enriched conditions. The collection efficiency of particles in a CO(2)-rich atmosphere for a given power consumption was thus somewhat lower than that found in air, due to the low quantity of particle charging in CO(2)-enriched air. At the same time, higher temperatures led to the higher electrical mobility of ions, which resulted in a greater collection efficiency for a given power. The presence of a negative corona also led to a greater collection efficiency of particles in an ESP than that achieved for a positive corona.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2010.07.028DOI Listing

Publication Analysis

Top Keywords

co2-enriched atmosphere
12
electrical mobility
12
mobility ions
12
collection efficiency
12
particle collection
8
electrostatic precipitator
8
co2-rich gas
8
oxy-fuel combustion
8
air low
8
efficiency particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!