Sodium butyrate down-regulation of indoleamine 2, 3-dioxygenase at the transcriptional and post-transcriptional levels.

Int J Biochem Cell Biol

Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Science, Sun Yat-sen University, University Town, Guangzhou, China.

Published: November 2010

The clinical outcomes of most immunotherapeutic strategies have been less effective than anticipated partially because of the tumor immune tolerance induced by many immune tolerance factors, which originate from the tumor and tumor microenvironment. Indoleamine 2, 3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-inducible enzyme and is one of main immune tolerance factors during tumor development. Sodium butyrate (NaB) has received much attention as a potential chemopreventive agent for cancer treatment due to its protective action against intracellular events including IFN-γ-mediated signaling transduction. Therefore, the question remains whether IDO is a target of the anti-tumor action of NaB. In this study, we demonstrate for the first time that NaB down-regulated IDO via both transcriptional and post-transcriptional mechanisms. NaB repressed the activity of STAT1 to inhibit STAT1-driven transcriptional activity of IDO. These mechanisms included inhibiting STAT1 701 tyrosine phosphorylation, nuclear translocation, and repression of STAT1 binding to γ-activated sites (GAS). Moreover, immunoprecipitation and immunoblotting assays showed that treatment of cells with NaB caused dramatic ubiquitination of total intracellular proteins, including IDO. Blocking 26S proteasome activity by addition of its specific inhibitor, bortezomib, reversed the ubiquitination and down-regulation of IDO. These results suggest that NaB-induced STAT1 activity inhibition and ubiquitin/proteasome-dependent proteolysis are involved in the down-regulation of IDO. The discoveries in this study represent a new mechanism in the anti-tumor action of NaB and may have implications for development of clinical cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2010.07.020DOI Listing

Publication Analysis

Top Keywords

immune tolerance
12
sodium butyrate
8
indoleamine 3-dioxygenase
8
transcriptional post-transcriptional
8
tolerance factors
8
anti-tumor action
8
action nab
8
down-regulation ido
8
ido
7
nab
6

Similar Publications

T cells in cardiac health and disease.

J Clin Invest

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction.

View Article and Find Full Text PDF

Antiviral therapy for hepatitis B virus infection is beneficial for the prognosis hepatocellular carcinoma.

World J Gastrointest Oncol

January 2025

Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.

In this editorial, we comment on the article by Mu , published in the recent issue of the . We pay special attention to the immune tolerance mechanism caused by hepatitis B virus (HBV) infection, the pathogenesis of hepatocellular carcinoma (HCC), and the role of antiviral therapy in treating HCC related to HBV infection. HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways, as well as by inhibiting the immune functions of macrophages, natural killer cells and dendritic cells.

View Article and Find Full Text PDF

Parasitic helminths secrete extracellular vesicles (EVs) into their host tissues to modulate immune responses, but the underlying mechanisms are poorly understood. We demonstrate that Ascaris EVs are efficiently internalised by monocytes in human peripheral blood mononuclear cells and increase the percentage of classical monocytes. Furthermore, EV treatment of monocytes induced a novel anti-inflammatory phenotype characterised by CD14, CD16, CC chemokine receptor 2 (CCR2) and programmed death-ligand 1 (PD-L1) cells.

View Article and Find Full Text PDF

Biometallic ions and derivatives: a new direction for cancer immunotherapy.

Mol Cancer

January 2025

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.

Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.

View Article and Find Full Text PDF

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!