AI Article Synopsis

Article Abstract

The ribosomal L1 stalk is a mobile structure implicated in directing tRNA movement during translocation through the ribosome. This article investigates three aspects of L1 stalk-tRNA interaction. First, by combining data from cryo electron microscopy, X-ray crystallography, and molecular dynamics simulations through the molecular dynamics flexible fitting method, we obtained atomic models of different tRNAs occupying the hybrid P/E state interacting with the L1 stalk. These models confirm the assignment of fluorescence resonance energy transfer states from previous single-molecule investigations of L1 stalk dynamics. Second, the models reconcile how initiator tRNA(fMet) interacts less strongly with the L1 stalk compared to elongator tRNA(Phe), as seen in previous single-molecule experiments. Third, results from a simulation of the entire ribosome in which the L1 stalk is moved from a half-closed conformation to its open conformation are found to support the hypothesis that L1 stalk opening is involved in tRNA release from the ribosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967302PMC
http://dx.doi.org/10.1016/j.jmb.2010.07.056DOI Listing

Publication Analysis

Top Keywords

stalk-trna interaction
8
molecular dynamics
8
previous single-molecule
8
stalk
6
role stalk-trna
4
ribosome
4
interaction ribosome
4
ribosome elongation
4
elongation cycle
4
cycle ribosomal
4

Similar Publications

The ribosomal L1 stalk is a mobile structure implicated in directing tRNA movement during translocation through the ribosome. This article investigates three aspects of L1 stalk-tRNA interaction. First, by combining data from cryo electron microscopy, X-ray crystallography, and molecular dynamics simulations through the molecular dynamics flexible fitting method, we obtained atomic models of different tRNAs occupying the hybrid P/E state interacting with the L1 stalk.

View Article and Find Full Text PDF

By using single-molecule fluorescence resonance energy transfer (smFRET), we observe the real-time dynamic coupling between the ribosome, labeled at the L1 stalk, and transfer RNA (tRNA). We find that an interaction between the ribosomal L1 stalk and the newly deacylated tRNA is established spontaneously upon peptide bond formation; this event involves coupled movements of the L1 stalk and tRNAs as well as ratcheting of the ribosome. In the absence of elongation factor G, the entire pretranslocation ribosome fluctuates between just two states: a nonratcheted state, with tRNAs in their classical configuration and no L1 stalk-tRNA interaction, and a ratcheted state, with tRNAs in an intermediate hybrid configuration and a direct L1 stalk-tRNA interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!