Thyroid hormone receptor β1 (TRβ1) is a hormone-dependent transcription factor activated by 3,5,3'-l-triiodothyronine (T3). TRβ1 functions as a tumor suppressor and disturbances of the THRB gene are frequent findings in cancer. Translational control mediated by untranslated regions (UTRs) regulates cell proliferation, metabolism and responses to cellular stress, processes that are involved in carcinogenesis. We hypothesized that reduced TRβ1 expression in clear cell renal cell cancer (ccRCC) results from regulatory effects of TRβ1 5' and 3'UTRs on protein translation. We determined TRβ1 expression and alternative splicing of TRβ1 5' and 3'UTRs in ccRCC and control tissue together with expression of the type 1 deiodinase enzyme (coded by DIO1, a TRβ1 target gene). Tissue concentrations of T3 (which are generated in part by D1) and expression of miRNA-204 (an mRNA inhibitor for which a putative interaction site was identified in the TRβ1 3'UTR) were also determined. TRβ1 mRNA and protein levels were reduced by 70% and 91% in ccRCC and accompanied by absent D1 protein, a 58% reduction in tissue T3 concentration and 2-fold increase in miRNA-204. Structural analysis of TRβ1 UTR variants indicated that reduced TRβ1 expression may be maintained in ccRCC by posttranscriptional mechanisms involving 5'UTRs and miRNA-204. The tumor suppressor activity of TRβ1 indicates that reduced TRβ1 expression and tissue hypothyroidism in ccRCC tumors is likely to be involved in the process of carcinogenesis or in maintaining a proliferative advantage to malignant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2010.07.025DOI Listing

Publication Analysis

Top Keywords

trβ1 expression
16
trβ1
13
reduced trβ1
12
untranslated regions
8
thyroid hormone
8
hormone receptor
8
clear cell
8
cell renal
8
renal cell
8
tumor suppressor
8

Similar Publications

Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances.

Pest Manag Sci

March 2025

Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.

Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism.

View Article and Find Full Text PDF

Zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis.

Biol Open

March 2025

Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.

During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.

View Article and Find Full Text PDF

Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.

View Article and Find Full Text PDF

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.

View Article and Find Full Text PDF

Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!