Intracellular calcium signaling pathways during liver ischemia and reperfusion.

J Invest Surg

Kalamazoo Center for Medical Studies, Michigan State University, Kalamazoo, Michigan, USA.

Published: August 2010

Calcium plays a major role in intracellular signaling mechanisms during ischemia reperfusion (I/R) injury of a liver cell. Under ischemic conditions, the absence of oxygen arrests oxidative phosphorylation, thereby eliminating the energy source by which hepatocellular mechanisms maintain homeostasis of calcium. This, in turn, leaves nonselective plasma membrane influx pores unopposed and results in a net increase in intracellular calcium concentrations. Subsequent reperfusion marks the onset and progression of apoptosis and necrosis, as it involves inflammatory responses as well as free-radical formation due to re-oxygenation of cells. These processes destroy the structural integrity of organelles, leading to disruptive redistribution of calcium between cellular and subcellular compartments. This initial elevation and later imbalance of intracellular calcium concentrations associated with I/R induce various molecular responses within each organelle. In the cytoplasm, a series of pro-apoptotic pathways involving various calcium sensitive enzymes are activated. The injury is further exacerbated in the endoplasmic reticulum (ER) due to the malfunction of mechanisms responsible for intracellular calcium sequestration. Both the mitochondria and the nucleus are also adversely affected, as their structural integrity and physiologic functions are disrupted. To date, however, the precise pathophysiology of these calcium-mediated signaling pathways is not fully understood due to its complex nature. This review aims to systematically examine the current literature about individual molecular signaling pathways in the cytoplasm, ER, mitochondria, and the nucleus prior to causing time-sensitive progression of permanent tissue injury.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08941939.2010.496036DOI Listing

Publication Analysis

Top Keywords

intracellular calcium
16
signaling pathways
12
ischemia reperfusion
8
calcium concentrations
8
structural integrity
8
mitochondria nucleus
8
calcium
7
intracellular
5
signaling
4
calcium signaling
4

Similar Publications

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy.

ACS Nano

January 2025

Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.

The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Diversity in Notch ligand-receptor signaling interactions.

Elife

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!