Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose dissolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to remove the IL completely and dried to form core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity because of a conductive pathway of bundled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt % MWNT loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939169PMC
http://dx.doi.org/10.1021/bm1006129DOI Listing

Publication Analysis

Top Keywords

prepared coaxial
8
coaxial electrospinning
8
mwnt-cellulose fibers
8
fibers
6
conductive cable
4
cable fibers
4
fibers insulating
4
insulating surface
4
surface prepared
4
electrospinning multiwalled
4

Similar Publications

Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignant tumors in the oral and maxillofacial region. Traditional treatments for OSCC, including surgery, radiotherapy, and chemotherapy, often lead to severe adverse effects. Therefore, the development of safe and effective novel cancer therapies is crucial for achieving synergistic cancer treatment, significantly enhancing patient survival and quality of life.

View Article and Find Full Text PDF

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new, cost-effective micromixing technique for creating liposome nanoformulations, comparing it to the conventional thin-film hydration (TFH) method.
  • The study used simulations and experimental design to determine optimal conditions for producing anionic liposomes, with both methods resulting in similar properties such as size, encapsulation efficiency, and stability.
  • The micromixing method offers a one-step production process that is highly controllable, reproducible, and compatible with various solvents, making it a versatile alternative for nanoliposome manufacturing.
View Article and Find Full Text PDF

The practical applications of SiO anode material are limited by large volume changes and poor electronic conductivity. To reduce the effects of these problems, a carbon-coated coaxial cable-like ZnO@SiO@C composite material was prepared. ZnO has a certian electronic conductivity and an electrochemical activity, and the carbon layer can alleviate the volume variation of SiO, effectively improving the electronic conductivity and structural stability.

View Article and Find Full Text PDF

Synergistic microwave hyperthermia treatment for subcutaneous deep breast cancer using conformal array antennas and a microwave-thermal-sensitive nanomaterial.

J Mater Chem B

January 2025

Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing 100190, P. R. China.

When microwave hyperthermia (MWH) array antenna technology is used to treat breast cancer, how to effectively target and heat deep tumors and reduce thermal damage to healthy tissues is still a challenge in clinical applications. In this study, the synergistic MWH effect of conformal-array antennas (CAA) and a novel microwave-thermal-sensitive nanomaterial (MTSN) was investigated for the treatment of subcutaneous deep breast cancer. At the beginning of the study, the thermal damage score was used to evaluate the therapeutic efficacy of the CAA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!