The design of functionalized polymers that can elicit specific biological responses and the development of methods to fabricate new devices that incorporate biological cues are of great interest to the biomedical community. The realization of nanostructured matrices that exhibit biological properties and that comprise fibers with diameters of similar scale to those of the natural extracellular matrix (ECM) would enable the provision of tailored materials for tissue engineering. Accordingly, the goal of this work is to create a biologically active functionalized electrospun matrix capable of guiding neurite growth for the regeneration of nerve tissue. In this study, nanoscale electrospun membranes made of poly ε-caprolactone enhanced with gelatin from calf skin were investigated to validate their biological response under in vitro culture of PC-12 nerve cells. Preliminary observations from SEM studies supported by image analysis highlighted the nanoscale texture of the scaffold with fiber diameters equal to 0.548 ± 0.140 μm. In addition, contact angle measurements confirmed the hydrophilic behavior of the membranes, ascribable to the gelatin content. We demonstrate that the balance of morphological and biochemical properties improves all the fundamental biological events of nerve regeneration, enhancing cell adhesion, proliferation, and differentiation in comparison with PCL nanofibrous scaffolds, as well as supporting the neurite outgrowth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm100221hDOI Listing

Publication Analysis

Top Keywords

electrospun membranes
8
biological
5
influence gelatin
4
gelatin cues
4
cues pcl
4
pcl electrospun
4
nerve
4
membranes nerve
4
nerve outgrowth
4
outgrowth design
4

Similar Publications

Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.

View Article and Find Full Text PDF

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.

View Article and Find Full Text PDF

Controlled release of bioactive copper (I) acylthiourea complexes through immobilization onto electrospun PCL/lignin nanofibers.

Int J Biol Macromol

December 2024

Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address:

This study presents the first development of Cu (I) acylthiourea complexes (C1-C5) incorporated polycaprolactone/lignin (PCL/Lig) electrospun nanofiber composites (PCL/Lig@Cu(I)). Electrospinning conditions and mass ratios of PCL and lignin were optimized, followed by the incorporation of varying concentrations of Cu(I) complexes. Structural, morphological, and thermal properties were characterized using SEM, TEM, FT-IR, XRD, TGA and WCA analyses.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!