Regulatory T cells (Treg) are commonly identified by CD25 (IL-2R alpha) surface expression and/or intracellular expression of the FOXP3 transcription factor. In addition, Treg are also characterized by low CD127 (IL-7R alpha) expression when compared to conventional T cells and their biology in the periphery is considered essentially independent of IL-7. We further investigated CD127 expression on Treg and we demonstrated differential CD127 expression depending on Treg subsets considered. Notably, we observed high CD127 expression on inducible costimulatory molecule (ICOS)- and CD103-expressing Treg subsets. Since these two markers reflect activation status, we addressed whether Treg activation modulated CD127 expression. We demonstrated that in contrast to conventional T cells, Treg significantly upregulated CD127 expression during in vitro and in vivo activation using adoptive transfer and contact dermatitis models. High CD127 expression on Treg was also predominantly detected ex vivo in some specific sites, notably bone marrow and skin. Importantly, higher CD127 expression on Treg correlated with higher phosphorylation of STAT5 upon IL-7 exposure. High CD127 expression on Treg also provided survival advantage upon in vitro incubation with IL-7. We thus demonstrated that low CD127 expression is not an intrinsic characteristic of Treg and we identified activated Treg as a potential target of endogenous or therapeutic IL-7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.201040531 | DOI Listing |
Biomed Pharmacother
December 2024
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Dean's office, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary. Electronic address:
ABCB1/MDR-1/P-glycoprotein (Pgp) is an ABC transporter responsible for cancer cell multi-drug resistance. It is expressed in cytotoxic T lymphocytes (CTL). Eliminating sensitive cancer cells during high-dose chemotherapy can also damage immune cells.
View Article and Find Full Text PDFInt Urol Nephrol
December 2024
Department of Emergency, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, China.
Objective: Nephrotic syndrome, a debilitating manifestation of kidney disease, often arises from diverse glomerular disorders and is accompanied by notable comorbidities. Despite indications of an immunological etiology, the precise role of immune cells in its pathogenesis remains unclear. This study aimed to elucidate the causal relationships between circulating immune cell phenotypes and nephrotic syndrome using a rigorous bidirectional Mendelian randomization approach.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
December 2024
Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
Purpose: Thyroid eye disease (TED) primarily occurs in hyperthyroid patients, sometimes resulting in poor visual prognosis. Although other autoimmune diseases have been reported to be associated with serum programmed cell death 1 (PD-1), the relationship with TED remains unknown. This study investigated the relationship between TED and immune checkpoint molecules.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).
View Article and Find Full Text PDFApoptosis
December 2024
Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!