AI Article Synopsis

  • Deep-sea ecosystems in the Mediterranean are less understood compared to their rich biodiversity in terrestrial and coastal regions, with studies covering various benthic organisms at depths ranging from 200 to over 4,000 meters.
  • Surprisingly, biodiversity in the deep-sea areas of the Mediterranean is high despite low organic carbon fluxes and lower faunal abundance, with specific trends indicating that smaller organisms exhibit a more significant decrease with depth than larger ones.
  • Each unique deep-sea habitat, like canyons and cold seeps, showcases distinct species, contributing to an estimated 2,805 species in total, of which around 66% remain to be discovered.

Article Abstract

Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914020PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011832PLOS

Publication Analysis

Top Keywords

deep-sea biodiversity
12
mediterranean sea
12
deep basins
12
biodiversity
11
deep-sea
9
deep-sea ecosystems
8
meiofauna macrofauna
8
macrofauna megafauna
8
open slopes
8
slopes deep
8

Similar Publications

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Solenogastres is a group of mollusks with evolutionary and ecological importance. Nevertheless, their diversity is underestimated and knowledge about the distribution of the approximately 300 formally described species is limited. Factors that contribute to this include their small size and frequent misidentification by non-specialists.

View Article and Find Full Text PDF

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!