Background: A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009.
Methodology: The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (<0.1 case per 1,000 people per annum (p.a.)) and stable (> or =0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially.
Conclusions: After more than a century of development and control, P. vivax remains more widely distributed than P. falciparum and is a potential cause of morbidity and mortality amongst the 2.85 billion people living at risk of infection, the majority of whom are in the tropical belt of CSE Asia. The probability of infection is reduced massively across Africa by the frequency of the Duffy negative trait, but transmission does occur on the continent and is a concern for Duffy positive locals and travellers. The final map provides the spatial limits on which the endemicity of P. vivax transmission can be mapped to support future cartographic-based burden estimations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914753 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0000774 | DOI Listing |
Sci Rep
January 2025
Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
School of Public Health, National Defense Medical Center, Taipei City, Taiwan.
Although the World Health Organization (WHO) certified Taiwan as being malaria-free in 1965, there are reports of a few imported cases each year by travelers who visit malaria-endemic areas. This study examined the epidemiology of imported malaria cases in Taiwan from 2014 to 2020, utilizing national surveillance data from the Taiwan Centers for Disease Control. Malaria cases were confirmed through the application of standard laboratory methods.
View Article and Find Full Text PDFLancet Infect Dis
January 2025
Institut Pasteur, Université Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Paris, France. Electronic address:
Background: Plasmodium vivax forms dormant liver stages (hypnozoites) that can reactivate weeks to months after primary infection. Radical cure requires a combination of antimalarial drugs to kill both the blood-stage and liver-stage parasites. Hypnozoiticidal efficacy of the liver-stage drugs primaquine and tafenoquine cannot be estimated directly because hypnozoites are undetectable.
View Article and Find Full Text PDFmedRxiv
January 2025
Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
Background: The WHO malaria treatment guidelines recommend a total dose in the range of 3·5 to 7·0 mg/kg of primaquine to eliminate () hypnozoites and prevent relapses. There are however indications that for tropical isolates, notably from Southeast Asia, the lower dose of 3·5 mg/kg is insufficient. Determining the most effective regimen to eliminate hypnozoites is needed to achieve elimination of this malaria parasite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!