Background: Cleavage of the amyloid precursor protein (APP) by β-site APP-cleaving enzyme and γ-secretase results in the generation of amyloid-β (Aβ) peptides that aggregate and deposit as senile plaques in brains of Alzheimer disease patients. Due to the fundamental role γ-secretase plays in the proteolysis of a number of proteins including Notch, pharmacological inhibition of γ-secretase has been associated with mechanism-based toxicities. Therefore, efforts have focussed on the modulation of γ-secretase activity to selectively decrease levels of Aβ₄₂ peptide while avoiding deleterious activity on Notch processing.
Objective: Here, we describe the in vitro and in vivo characterisation of a novel γ-secretase modulator, GSM-10h, and investigate the potential for shorter Aβ peptides to induce neurotoxicity in rat primary cortical neurons.
Methods: The effect of GSM-10h on Aβ levels was investigated in SH-SY5Y cells expressing mutant APP and in TASTPM mice expressing APP and presenilin-1 mutant transgenes. The effect of GSM-10h on Notch processing was also determined.
Results: In cells, GSM-10h decreased levels of Aβ₄₂ while concomitantly increasing levels of Aβ₃₈ in the absence of effects on Aβ₄₀ levels. In TASTPM mice, GSM-10h effectively lowered brain Aβ₄₂ and increased brain Aβ₃₈, with no effect on Notch signalling. Unlike Aβ₄₂, which causes neuronal cell death, neither Aβ₃₇ nor Aβ₃₈ were neurotoxic.
Conclusions: These findings confirm GSM-10h exhibits the profile of a γ-secretase modulator. In addition, TASTPM mice are shown to be responsive to treatment with a γ-secretase modulator, thereby highlighting the utility of this bitransgenic mouse model in drug discovery efforts focussed on the development of γ-secretase modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000313903 | DOI Listing |
Sci Rep
March 2024
Institute of Physiology 1/Neurophysiology, Jena University Hospital, 07740, Jena, Germany.
Although Alzheimer's disease (AD) is characterized by distinct pathological changes, their precise impact on cortical functions are not well understood. Here we used TASTPM mice as an AD model and asked whether the development of neurodegenerative changes has an impact on the extracellular space (ECS) and neuronal excitability, in particular cortical spreading depolarization (CSD) which requires intact neuron and glial functions. We studied wildtype (WT) and TASTPM mice (3, 6, and 12 months old).
View Article and Find Full Text PDFNat Commun
June 2023
Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.
Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12.
View Article and Find Full Text PDFBrain Behav Immun Health
December 2022
Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK.
Chronic pain is undertreated in people with Alzheimer's disease (AD) and better understanding of the underlying mechanisms of chronic pain in this neurodegenerative disease is essential. Neuropathic pain and AD share a significant involvement of the peripheral immune system. Therefore, we examined the development of nerve injury-induced allodynia in TASTPM (APPsweXPS1.
View Article and Find Full Text PDFInt J Mol Sci
November 2020
Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
Objective: In this exploratory study, we tested whether electroencephalographic (EEG) rhythms may reflect the effects of a chronic administration (4 weeks) of an anti-amyloid β-site amyloid precursor protein (APP) cleaving enzyme 1 inhibitor (BACE-1; ER-901356; Eisai Co., Ltd., Tokyo, Japan) in TASTPM (double mutation in APP KM670/671NL and PSEN1 M146V) producing Alzheimer's disease (AD) amyloid neuropathology as compared to wild type (WT) mice.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2021
Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy.
Background: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!