New biological strategies for the treatment of Salmonella infection are needed in response to the increase in antibiotic-resistant strains. Escherichia coli L1000 and Bifidobacterium thermophilum RBL67 were previously shown to produce antimicrobial proteinaceous compounds (microcin B17 and thermophilicin B67, respectively) active in vitro against a panel of Salmonella strains recently isolated from clinical cases in Switzerland. In this study, two three-stage intestinal continuous fermentation models of Salmonella colonization inoculated with immobilized faeces of a two-year-old child were implemented to study the effects of the two bacteriocinogenic strains compared with a bacteriocin-negative mutant of strain L1000 on Salmonella growth, as well as gut microbiota composition and metabolic activity. Immobilized E. coli L1000 added to the proximal colon reactor showed a low colonization, and developed preferentially in the distal colon reactor independent of the presence of genetic determinants for microcin B17 production. Surprisingly, E. coli L1000 addition strongly stimulated Salmonella growth in all three reactors. In contrast, B. thermophilum RBL67 added in a second phase stabilized at high levels in all reactors, but could not inhibit Salmonella already present at a high level (>10(7) c.f.u. ml(-1)) when the probiotic was added. Inulin added at the end of fermentation induced a strong bifidogenic effect in all three colon reactors and a significant increase of Salmonella counts in the distal colon reactor. Our data show that under the simulated child colonic conditions, the microcin B17 production phenotype does not correlate with inhibition of Salmonella but leads to a better colonization of E. coli L1000 in the distal colon reactor. We conclude that in vitro models with complex and complete gut microbiota are required to accurately assess the potential and efficacy of probiotics with respect to Salmonella colonization in the gut.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.042036-0DOI Listing

Publication Analysis

Top Keywords

coli l1000
16
colon reactor
16
microcin b17
12
distal colon
12
salmonella
10
thermophilum rbl67
8
salmonella colonization
8
salmonella growth
8
gut microbiota
8
b17 production
8

Similar Publications

Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models.

BMC Microbiol

December 2011

Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.

Background: Accurate assessment of probiotics with targeted anti-Salmonella activity requires suitable models accounting for both, microbe-microbe and host-microbe interactions in gut environments. Here we report the combination of two original in vitro intestinal models closely mimicking the complex in vivo conditions of the large intestine. Effluents from continuous in vitro three-stage fermentation colonic models of Salmonella Typhimurium infection inoculated with immobilized child microbiota and Salmonella were directly applied to confluent mucus-secreting HT29-MTX cell layers.

View Article and Find Full Text PDF

New biological strategies for the treatment of Salmonella infection are needed in response to the increase in antibiotic-resistant strains. Escherichia coli L1000 and Bifidobacterium thermophilum RBL67 were previously shown to produce antimicrobial proteinaceous compounds (microcin B17 and thermophilicin B67, respectively) active in vitro against a panel of Salmonella strains recently isolated from clinical cases in Switzerland. In this study, two three-stage intestinal continuous fermentation models of Salmonella colonization inoculated with immobilized faeces of a two-year-old child were implemented to study the effects of the two bacteriocinogenic strains compared with a bacteriocin-negative mutant of strain L1000 on Salmonella growth, as well as gut microbiota composition and metabolic activity.

View Article and Find Full Text PDF

Aims: To compare in vitro the inhibitory activity of four bacteriocin-producing Escherichia coli to a well-characterized panel of Salmonella strains, recently isolated from clinical cases in Switzerland.

Methods And Results: A panel of 68 nontyphoidal Salmonella strains was characterized by pulsed-field gel electrophoresis analysis and susceptibility to antibiotics. The majority of tested strains were genetically different, with 40% resistant to at least one antibiotic.

View Article and Find Full Text PDF

Objective: To assess the effect of a multifaceted hand hygiene culture-change program on health care worker behaviour, and to reduce the burden of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infections.

Design And Setting: Timetabled introduction of interventions (alcohol/chlorhexidine hand hygiene solution [ACHRS], improved cleaning of shared ward equipment, targeted patient decolonisation, comprehensive "culture change" package) to five clinical areas of a large university teaching hospital that had high levels of MRSA.

Main Outcome Measures: Health care worker hand hygiene compliance; volume of ACHRS used; prevalence of patient and health care worker MRSA colonisation; environmental MRSA contamination; rates of clinical MRSA infection; and rates of laboratory detection of ESBL-producing Escherichia coli and Klebsiella spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!