Purpose: To determine the expected ablation zone size and associated isotherms when using clinically available percutaneous cryoprobes for pulmonary cryoablation in a porcine lung model.

Materials And Methods: Seven ablations were performed in the lungs of three adult pigs using clinically available 2.4-mm cryoprobes (Endocare, Inc, Irvine, California) and a 10-minute double-freeze protocol. Five 18-gauge thermocouples were positioned at 5-mm increments (ie, 5, 10, 15, 20, and 25 mm) from the cryoprobe. Real-time tissue temperatures were recorded during the cryoablation. The isotherms obtained during the ablation and the pathological ablation zones were measured.

Results: The pathologic zone of complete necrosis had a mean diameter of 2.4 + or - 0.2 cm, with a mean area of 4.6 + or - 0.6 cm(2) and a circularity of 0.95 + or - 0.04. In comparison, the mean diameter (+ or - standard deviation) of the 0 degrees C, -20 degrees C, and -40 degrees C isotherms were 3.1 + or - 0.2 cm, 2.3 + or - 0.3 cm, and 1.8 + or - 0.4 cm, respectively. The -20 degrees C isotherm was most closely related to the pathologic zone of ablation.

Conclusions: This study establishes the temperature isotherms and associated ablation zone size that can be expected with modern percutaneous cryoprobes in an in vivo porcine lung model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158241PMC
http://dx.doi.org/10.1016/j.jvir.2010.04.029DOI Listing

Publication Analysis

Top Keywords

temperature isotherms
8
pulmonary cryoablation
8
ablation zone
8
zone size
8
percutaneous cryoprobes
8
porcine lung
8
pathologic zone
8
-20 degrees
8
zone
5
ablation
5

Similar Publications

Electride transition in liquid aluminum under high pressure and high temperature.

J Chem Phys

January 2025

Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.

View Article and Find Full Text PDF

In this study, we synthesized two nanocomposites, cross-linked PVA/HKUST and PVA/ZIF-67, by integrating metal-organic frameworks (MOFs) into electrospun polyvinyl alcohol (PVA). Several characterization techniques including FTIR, XRD, ICP, SEM, TGA, UV-Vis, zeta potential, and N adsorption-desorption were employed. The adsorption performance of the composites for cefixime (CFX) removal was assessed under varying conditions such as MOF content, contact time, pH, initial CFX concentration, and temperature.

View Article and Find Full Text PDF

PathCrisp: an innovative molecular diagnostic tool for early detection of NDM-resistant infections.

Sci Rep

January 2025

CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.

The rapid and early detection of infections and antibiotic resistance markers is a critical challenge in healthcare. Currently, most commercial diagnostic tools for analyzing antimicrobial resistance patterns of pathogens require elaborate culture-based testing. Our study aims to develop a rapid, accurate molecular detection system that can be used directly from culture, thereby introducing molecular testing in conjunction with culture tests to reduce turnaround time and guide therapy.

View Article and Find Full Text PDF

In this work, temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) and the ‌guanylthiourea (GLA) were used to modify chitosan (CS) to prepare a novel PNIPAM/GLA/CS adsorbent for Ag(I) ions. Temperature variations near the lower critical solution temperature (LCST) facilitate the adjustment of functional group distribution within the composite material, thereby influencing its adsorption performance for silver ions. The characteristics of this composite material were confirmed using a variety of techniques, including scanning electron microscopy (SEM), variable-temperature ultraviolet-visible near-infrared spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

We report the detailed investigation of the magnetic, transport, and magnetocaloric effects of GdS- bSe by magnetic susceptibility χ(T ), isothermal magnetization M (H), resistivity ρ(T, H), and heat capacity Cp(T ) measurements, crystallizing in the ZrSiS-type tetragonal crystal system with space group P 4/nmm. Temperature-dependent magnetic susceptibility measurements revealed long-range antiferromagnetic ordering with two additional magnetic anomalies below N´eel temperature (TN ≈ 8.6 K), corroborated through magnetocaloric and specific heat studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!