Background: Although the complete genome sequence and annotation of Arabidopsis were released at the end of year 2000, it is still a great challenge to understand the function of each gene in the Arabidopsis genome. One way to understand the function of genes on a genome-wide scale is expression profiling by microarrays. However, the expression level of many genes in Arabidopsis genome cannot be detected by microarray experiments. In addition, there are many more novel genes that have been discovered by experiments or predicted by new gene prediction programs. Another way to understand the function of individual genes is to investigate their in vivo expression patterns by reporter constructs in transgenic plants which can provide basic information on the patterns of gene expression.

Results: A high throughput pipeline was developed to generate promoter-reporter (GFP) transgenic lines for Arabidopsis genes expressed at very low levels and to examine their expression patterns in vivo. The promoter region from a total of 627 non- or low-expressed genes in Arabidopsis based on Arabidopsis annotation release 5 were amplified and cloned into a Gateway vector. A total of 353 promoter-reporter (GFP) constructs were successfully transferred into Agrobacterium (GV3101) by triparental mating and subsequently used for Arabidopsis transformation. Kanamycin-resistant transgenic lines were obtained from 266 constructs and among them positive GFP expression was detected from 150 constructs. Of these 150 constructs, multiple transgenic lines exhibiting consistent expression patterns were obtained for 112 constructs. A total 81 different regions of expression were discovered during our screening of positive transgenic plants and assigned Plant Ontology (PO) codes.

Conclusions: Many of the genes tested for which expression data were lacking previously are indeed expressed in Arabidopsis during the developmental stages screened. More importantly, our study provides plant researchers with another resource of gene expression information in Arabidopsis. The results of this study are captured in a MySQL database and can be searched at http://www.jcvi.org/arabidopsis/qpcr/index.shtml. Transgenic seeds and constructs are also available for the research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927586PMC
http://dx.doi.org/10.1186/1746-4811-6-18DOI Listing

Publication Analysis

Top Keywords

transgenic lines
16
expression patterns
16
genes arabidopsis
12
understand function
12
arabidopsis
10
expression
10
high throughput
8
gfp transgenic
8
genes
8
arabidopsis genome
8

Similar Publications

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Spatiotemporal control of cell ablation using Ronidazole with Nitroreductase in Drosophila.

Dev Biol

December 2024

Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:

The ability to induce cell death in a controlled stereotypic manner has led to the discovery of evolutionary conserved molecules and signaling pathways necessary for tissue growth, repair, and regeneration. Here we report the development of a new method to genetically induce cell death in a controlled stereotypic manner in Drosophila. This method has advantages over other current methods and relies on expression of the E.

View Article and Find Full Text PDF

Effect of CHO cell line constructed with CMAH gene-directed integration on the recombinant protein expression.

Int J Biol Macromol

December 2024

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China. Electronic address:

Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.

View Article and Find Full Text PDF

Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1.

Front Plant Sci

December 2024

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.

RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.

View Article and Find Full Text PDF

The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.

Plant Physiol Biochem

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China. Electronic address:

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!