The design of porous scaffolds able to promote and guide cell proliferation, colonization, and biosynthesis in three dimensions is key determinant in bone tissue engineering (bTE). The aim of this study was to assess the role of the micro-architecture of poly(epsilon-caprolactone) scaffolds in affecting human mesenchymal stem cells' (hMSCs) spatial organization, proliferation, and osteogenic differentiation in vitro. Poly(epsilon-caprolactone) scaffolds for bTE and characterized by mono-modal and bi-modal pore size distributions were prepared by the combination of gas foaming and selective polymer extraction from co-continuous blends. The topological properties of the pore structure of the scaffolds were analyzed and the results correlated with the ability of hMSCs to proliferate, infiltrate, and differentiate in vitro in three dimensions. Results showed that the micro-architecture of the pore structure of the scaffolds plays a crucial role in defining cell seeding efficiency as well as hMSCs' three-dimensional colonization, proliferation, and osteogenic differentiation. Taken all together, our results indicated that process technologies able to allow a fine-tune of the topological properties of biodegradable porous scaffolds are essential for bTE strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2009.0494DOI Listing

Publication Analysis

Top Keywords

bone tissue
8
human mesenchymal
8
mesenchymal stem
8
differentiation vitro
8
porous scaffolds
8
three dimensions
8
polyepsilon-caprolactone scaffolds
8
proliferation osteogenic
8
osteogenic differentiation
8
topological properties
8

Similar Publications

Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.

Study Design: Retrospective case review.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).

Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.

Study Design: Prospective performance study.

Setting: Secondary care.

View Article and Find Full Text PDF

Facial nerve dysfunction (FND) is a well-recognized but poorly documented complication of mandibular distraction osteogenesis (MDO) for Robin sequence (RS). This study aims to document the authors' experiences with FND and identify risk factors associated with this adverse event. A retrospective review of a prospectively gathered database was performed to identify patients with RS who underwent MDO at the authors' institution from March 2016 to June 2023.

View Article and Find Full Text PDF

This study aimed to develop a novel reconstruction method for segmental mandibulectomy. In the authors' opinion, reconstruction of the anterior border of the mandibular ramus using a double-arm vascularized fibular flap is important to prevent deformity due to buccal depression and the accumulation of food debris, thereby eliminating masticatory dead space that cannot be filled with prostheses such as implants or dentures. Using conventional reconstruction plates, the reconstructed bone positioned at the anterior border of the mandibular ramus required either fixing with only 1 screw or using 2 plates for stable fixation, making it difficult to position the plates stably.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!