Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.

Rev Sci Instrum

Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

Published: July 2010

We have developed a miniature diamond anvil cell for magnetization measurements in a widely used magnetic property measurement system commercial magnetometer built around a superconducting quantum interference device. The design of the pressure cell is based on the turnbuckle principle in which force can be created and maintained by rotating the body of the device while restricting the counterthreaded end-nuts to translational movement. The load on the opposed diamond anvils and the sample between them is generated using a hydraulic press. The load is then locked by rotating the body of the cell with respect to the end-nuts. The dimensions of the pressure cell have been optimized by use of finite element analysis. The cell is approximately a cylinder 7 mm long and 7 mm in diameter and weighs only 1.5 g. Due to its small size the cell thermalizes rapidly. It is capable of achieving pressures in excess of 10 GPa while allowing measurements to be performed with the maximum sensitivity of the magnetometer. The performance of the pressure cell is illustrated by a high pressure magnetic study of Mn(3)[Cr(CN)(6)](2) x xH(2)O Prussian blue analog up to 10.3 GPa.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3465311DOI Listing

Publication Analysis

Top Keywords

pressure cell
12
diamond anvil
8
cell
8
anvil cell
8
superconducting quantum
8
quantum interference
8
interference device
8
rotating body
8
turnbuckle diamond
4
cell high-pressure
4

Similar Publications

Detection of sensory deficits in fine nerve fibres in leprosy diagnosis.

Trop Med Int Health

January 2025

Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

Objectives: The purpose of this study was to determine reference points for thermal perception in cutaneous lesions of leprosy, a disease caused by Mycobacterium leprae characterised by hypoesthesia in skin lesions due to nerve and Schwann cell infection. Early diagnosis is essential to control transmission and effectively treat the disease.

Methods: Quantitative thermal testing (QTT) has been proposed as a valuable tool for early detection of the disease, initiation of treatment, and monitoring of nerve damage.

View Article and Find Full Text PDF

Objectives: The high incidence of coronary artery heart disease (CHD) poses a significant burden and challenge to public health systems globally. Effective prevention and early diagnosis of CHD have become key strategies to alleviate this burden. This study aims to explore the application of advanced machine learning techniques to enhance the accuracy of early screening and risk assessment for CHD.

View Article and Find Full Text PDF

Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients.

Comput Methods Programs Biomed

December 2024

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy. Electronic address:

Background And Objective: Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography, or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy is recommended as the initial treatment approach for mild ARDS.

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!