Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sticking of one hydrogen atom chemisorbed on the (0001) graphite surface is investigated using a mixed classical-quantum method. The phonon modes of the system in the collinear scattering approach are included in the dynamics calculations. The vibrational degrees of freedom of the surface (phonons) are treated classically, while the H-surface motion is treated using a one-dimensional quantum wave packet propagation method. The sticking probabilities are calculated and the individual contributions of the phonon bands to the collision dynamics are analyzed for surface temperatures of 10, 150, and 300 K and hydrogen kinetic energies ranging from 0.13 to 1.08 eV. An analytical form of the sticking probability as a function of the surface temperature is also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3463001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!