Herein, we report the synthesis of multiscale nanostructured p-type (Bi,Sb)(2)Te(3) bulk materials by melt-spinning single elements of Bi, Sb, and Te followed by a spark plasma sintering process. The samples that were most optimized with the resulting composition (Bi(0.48)Sb(1.52)Te(3)) and specific nanostructures showed an increase of approximately 50% or more in the figure of merit, ZT, over that of the commercial bulk material between 280 and 475 K, making it suitable for commercial applications related to both power generation and refrigeration. The results of high-resolution electron microscopy and small angle and inelastic neutron scattering along with corresponding thermoelectric property measurements corroborate that the 10-20 nm nanocrystalline domains with coherent boundaries are the key constituent that accounts for the resulting exceptionally low lattice thermal conductivity and significant improvement of ZT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl100804aDOI Listing

Publication Analysis

Top Keywords

specific nanostructures
8
identifying specific
4
nanostructures responsible
4
responsible high
4
high thermoelectric
4
thermoelectric performance
4
performance bisb2te3
4
bisb2te3 nanocomposites
4
nanocomposites report
4
report synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!