Role of heparan sulfates and glycosphingolipids in the pore formation of basic polypeptides of cobra cardiotoxin.

Adv Exp Med Biol

National Synchrotron Radiation Research Center and Department of Life Science, National Tsing Hua University, 101 Kuang Fu Road 2nd Sec, Hsinchu 30043, Taiwan.

Published: August 2010

Cobra venom contains cardiotoxins (CTXs) that induce tissue necrosis and systolic heart arrest in bitten victims. CTX-induced membrane pore formation is one of the major mechanisms responsible for the venom's designated cytotoxicity. This chapter examines how glycoconjugates such as heparan sulfates (HS) and glycosphingolipids, located respectively in the extracellular matrix and lipid bilayers of the cell membranes, facilitate CTX pore formation. Evidences for HS-facilitated cell surface retention and glycosphingolipid-facilitated membrane bilayer insertion of CTX are reviewed. We suggest that similar physical steps could play a role in the mediation of other pore forming toxins (PFT). The membrane pores formed by PFT are expected to have limited lifetime on biological cell surface as a result of membrane dynamics during endocytosis and/or rearrangement of lipid rafts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-6327-7_12DOI Listing

Publication Analysis

Top Keywords

pore formation
12
heparan sulfates
8
sulfates glycosphingolipids
8
cell surface
8
role heparan
4
pore
4
glycosphingolipids pore
4
formation basic
4
basic polypeptides
4
polypeptides cobra
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Shoolini University, Solan, Himachal Pradesh, India.

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Virginia Commonwealth University, Richmond, VA, USA.

Background: Pyroptosis is a type of inflammasome-dependent cell death, in which gasdermin D (GSDMD) plays key roles as the executor. Neuroinflammation and pyroptosis have been indicated critical roles in neurodegenerative disorders including Alzheimer's disease (AD). Therefore, novel GSDMD inhibitors represent valuable probes to understand and validate GSDMD as a viable drug target for AD.

View Article and Find Full Text PDF

Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others.

View Article and Find Full Text PDF

Sulfate Promotes Compact CaCO Formation and Protects Portland Cement from Supercritical CO Attack.

Environ Sci Technol

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Supercritical (sc) CO in geologic carbon sequestration (GCS) can chemically and mechanically deteriorate wellbore cement, raising concerns for long-term operations. In contrast to the conventional view of "sulfate attack" on cement, we found that adding 0.15 M sulfate to the acidic brine can significantly reduce the impact of scCO attack on Portland cement, resulting in stronger cement than that found in a sulfate-free system.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!