N-Acetylaspartic acid (NAA) accumulates in Canavan disease, a severe inherited neurometabolic disorder clinically characterized by mental retardation, hypotonia, macrocephaly, and seizures. The mechanisms of brain damage in this disease remain poorly understood. Recent studies developed by our research group showed that NAA induces oxidative stress in vitro and in vivo in cerebral cortex of rats. Lipoic acid is considered as an efficient antioxidant which can easily cross the blood-brain barrier. Considering the absence of specific treatment to Canavan disease, this study evaluates the possible prevention of the oxidative stress promoted by NAA in vivo by the antioxidant lipoic acid to preliminarily evaluate lipoic acid efficacy against pro-oxidative effects of NAA. Fourteen-day-old Wistar rats received an acute administration of 0.6 mmol NAA/g body weight with or without lipoic acid (40 mg/kg body weight). Catalase (CAT), glutathione peroxidase (GPx), and glucose 6-phosphate dehydrogenase activities, hydrogen peroxide content, thiobarbituric acid-reactive substances (TBA-RS), spontaneous chemiluminescence, protein carbonyl content, total antioxidant potential, and DNA-protein cross-links were assayed in the cerebral cortex of rats. CAT, GPx activities, and total antioxidant potential were significantly reduced, while hydrogen peroxide content, TBA-RS, spontaneous chemiluminescence, and protein carbonyl content were significantly enhanced by acute administration of NAA. Those effects were all prevented by lipoic acid pretreatment. Our results clearly show that lipoic acid may protect against the oxidative stress promoted by NAA. This could represent a new therapeutic approach to the patients affected by Canavan disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-010-0547-xDOI Listing

Publication Analysis

Top Keywords

lipoic acid
28
canavan disease
12
oxidative stress
12
acid
9
n-acetylaspartic acid
8
cerebral cortex
8
cortex rats
8
stress promoted
8
promoted naa
8
acute administration
8

Similar Publications

The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections.

Int J Biol Macromol

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Synthesis of piceid lipoate and the effect and micro-mechanism of alpha-lipoic acid moiety on its antioxidant activity.

Food Res Int

January 2025

Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

A lipophilic piceid lipoate (PIL) was synthesized by enzymatic method to enhance the antioxidant activity of piceid and improve its state in oil system. The highest substrate conversion of 93.71 % was obtained in γ-valerolactone using Novozym 435 as a catalyst, with a piceid/lipoic acid ratio of 1:15 (mM/mM), an enzyme dosage of 40 mg/mL, and 4 Å molecular sieves at 400 mg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!