Surfing on a new wave of single-molecule fluorescence methods.

Phys Biol

Department of Physics, Biological Physics Research Group, University of Oxford, Oxford, UK.

Published: August 2010

Single-molecule fluorescence microscopy is currently one of the most popular methods in the single-molecule toolbox. In this review, we discuss recent advances in fluorescence instrumentation and assays: these methods are characterized by a substantial increase in complexity of the instrumentation or biological samples involved. Specifically, we describe new multi-laser and multi-colour fluorescence spectroscopy and imaging techniques, super-resolution microscopy imaging and the development of instruments that combine fluorescence detection with other single-molecule methods such as force spectroscopy. We also highlight two pivotal developments in basic and applied biosciences: the new information available from detection of single molecules in single biological cells and exciting developments in fluorescence-based single-molecule DNA sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/7/3/031001DOI Listing

Publication Analysis

Top Keywords

single-molecule fluorescence
8
methods single-molecule
8
single-molecule
5
fluorescence
5
surfing wave
4
wave single-molecule
4
methods
4
fluorescence methods
4
fluorescence microscopy
4
microscopy currently
4

Similar Publications

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Aims: Establishment of a protocol for routine single-molecule localisation microscopy (SMLM) imaging on formalin fixed paraffin embedded (FFPE) tissue using medical renal disease including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS).

Methods: Protocol for normal and diseased renal FFPE tissue was developed to investigate the clinical diagnostic potential of SMLM. Antibody concentrations were determined for confocal microscopy and transferred to SMLM.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.

Biophys Physicobiol

September 2024

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!