Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996116 | PMC |
http://dx.doi.org/10.1182/blood-2010-05-285726 | DOI Listing |
Orphanet J Rare Dis
January 2025
Division of Pediatric Epileptology, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany.
Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.
View Article and Find Full Text PDFMol Med
January 2025
General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
Several members of the NIMA-related kinase (NEK) family have been implicated in tumor progression; however, the role and underlying mechanisms of NEK8 in gastric cancer (GC) remain unclear. This study revealed a significant upregulation of NEK8 in GC, identifying it as an independent prognostic marker in patients with GC. Consistent with these findings, NEK8 silencing substantially impeded GC aggressiveness both in vitro and in vivo, while its overexpression produced the opposite effect.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1.
View Article and Find Full Text PDFRev Esp Cardiol (Engl Ed)
January 2025
Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria. Electronic address:
Introduction And Objectives: Patients undergoing percutaneous coronary intervention in vessels with moderate-to-severe tortuosity are at higher risk of adverse outcomes, but data are scarce in the era of newer-generation stents. We compared outcomes following percutaneous coronary intervention in vessels with moderate-to-severe tortuosity using a bioresorbable-polymer sirolimus-eluting stent (BP-SES) vs a durable-polymer everolimus-eluting stent.
Methods: A total of 2350 patients from the BIOFLOW II, IV, and V randomized trials were stratified into 2 groups based on target-vessel tortuosity: none-to-mild and moderate-to-severe.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!