Due to the different physico-chemical properties of phenols, the development of a methodology for the simultaneous extraction and determination of phenolic compounds belonging to several families, such as chlorophenols (CPs), alkylphenols (APs), nitrophenols (NTPs) and cresols is difficult. This study shows the development and validation of a method for the analysis of 13 phenolic compounds (including CPs, APs, NTPs and cresols) in agricultural soils. For this purpose, a quick, easy, cheap, effective, rugged and safe (QuEChERS)-based procedure was developed, validated and applied to the analysis of real samples. A derivatization step prior to the final determination by gas chromatography (GC) coupled to a triple quadrupole analyzer operating in tandem mass spectrometry (QqQ-MS/MS) was performed by using acetic acid anhydride (AAA) and pyridine (Py). The optimized procedure was validated, obtaining average extraction recoveries in the range 69-103% (10microgkg(-1)), 65-98% (50microgkg(-1)), 76-112% (100microgkg(-1)) and 76-112% (300microgkg(-1)), with precision values (expressed as relative standard deviation, RSD)< or =22% (except for 4-chlorophenol) involving intra-day and inter-day studies. Furthermore, 15 real soil samples were analyzed by the proposed method in order to assess its applicability. Some phenolic compounds (e.g. 2,4,6-trichlorophenol or 4-tert-octylphenol) were found in the samples at trace levels (<10microgkg(-1)).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2010.07.004DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
12
quick easy
8
easy cheap
8
cheap effective
8
effective rugged
8
simultaneous extraction
8
cresols agricultural
8
agricultural soils
8
ntps cresols
8
application quick
4

Similar Publications

The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.

View Article and Find Full Text PDF

Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives.

Curr Nutr Rep

January 2025

Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.

Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.

Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.

View Article and Find Full Text PDF

The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.

View Article and Find Full Text PDF

Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.

View Article and Find Full Text PDF

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!