Thermal oxidation for controlling protein interactions with porous silicon.

Langmuir

Ian Wark Research Institute, Australian Research Council Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes SA 5095, Australia.

Published: September 2010

Thermal oxidation of porous silicon (pSi) has been used to control interactions with three proteins; lysozyme, papain, and human serum albumin (HSA) enabling the influences of protein structure, molecular weight, and charge to be elucidated. Adsorption behavior was assessed via adsorption isotherms while the structures of adsorbed proteins were investigated using a bioactivity assay, FTIR, and zeta potential. Time-of-flight secondary ion mass spectrometry was used to examine protein pore penetration. High protein adsorption onto unoxidized pSi (240-610 microg/m(2)) was attributed to predominately hydrophobic interactions which resulted in structural changes of the adsorbed proteins and significant loss of bioactivity. Thermal oxidation at 400 and 800 degrees C significantly reduced protein adsorption (80-485 microg/m(2)) by reducing hydrophobicity. Oxidation of pSi modified the protein adsorption mechanisms to solely electrostatic attraction for positively charged proteins and structural rearrangement for negatively charged proteins. Adsorption via electrostatic attraction preserved protein bioactivity and zeta potential, thus inferring a retention of their native structure. In contrast, the negative charge and globular structure of HSA resulted in a loss of structure. We have demonstrated that thermal oxidation of pSi can be used to control protein interactions, adsorbed structure, and bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la102367zDOI Listing

Publication Analysis

Top Keywords

thermal oxidation
16
protein adsorption
12
protein
8
protein interactions
8
porous silicon
8
psi control
8
adsorbed proteins
8
zeta potential
8
oxidation psi
8
electrostatic attraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!