The reliability of chronology is a prerequisite for meaningful paleoclimate reconstructions from sedimentary archives. The conventional approach of radiocarbon dating bulk organic carbon in lake sediments is often hampered by the old carbon effect, i.e., the assimilation of ancient dissolved inorganic carbon (DIC) derived from carbonate bedrocks or other sources. Therefore, radiocarbon dating is ideally performed on organic compounds derived from land plants that use atmospheric CO(2) and rapidly delivered to sediments. We demonstrate that lignin phenols isolated from lake sediments using reversed phase high performance liquid chromatography (HPLC) can serve as effective (14)C dating materials for establishing chronology during the late Quaternary. We developed a procedure to purify lignin phenols, building upon a published method. By isolating lignin from standard wood reference substances, we show that our method yields pure lignin phenols and consistent ages as the consensus ages and that our procedure does not introduce radiocarbon contamination. We further demonstrate that lignin phenol ages are compatible with varve counted and macrofossil dated sediment horizons in Steel Lake and Fayetteville Green Lake. Applying the new method to lake sediment cores from Lake Qinghai demonstrates that lignin phenol ages in Lake Qinghai are consistently younger than bulk total organic carbon (TOC) ages which are contaminated by old carbon effect. We also show that the age offset between lignin and bulk organic carbon differs at different Lake Qinghai sedimentary horizons, suggesting a variable hard water effect at different times and that a uniform age correction throughout the core is inappropriate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac100494mDOI Listing

Publication Analysis

Top Keywords

lignin phenols
16
radiocarbon dating
12
lake sediments
12
organic carbon
12
lake qinghai
12
lake
9
lignin
8
establishing chronology
8
chronology late
8
late quaternary
8

Similar Publications

The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.

View Article and Find Full Text PDF

Lignin and copper nanocomposite coating for antibacterial mask.

Int J Biol Macromol

December 2024

Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA)State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:

Lignin is a natural phenolic polymer characterized with renewable, sustainable and biocompatible, but yet remain underutilized. In the post-pandemic era, people are conventionally reusing mask but without any disinfections to prevent infection of virus in public places, which could lead to accumulation of bacteria and secondary infections. The development of antibacterial mask from lignin would simultaneously address the hygiene issues of used mask due to microbe accumulation and provide novel approach for lignin valorization.

View Article and Find Full Text PDF

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

A one-step and solvent-free strategy for high lignin-containing polyurethane elastomers with excellent mechanical and shape memory performance.

Int J Biol Macromol

December 2024

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.

Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.

View Article and Find Full Text PDF

Biochar can serve as an activator for potassium ferrate, significantly enhancing the treatment efficiency to antibiotics. However, the mechanism by which biochar activated potassium ferrate remained unclear, necessitating further investigation. Cellulose biochar (CBC) and lignin biochar (LBC) derived by two model compounds which were the highest proportion of content in biomass were adopted to be study object, to investigate the removal efficiency of tetracycline (TC) by ferrate synergetic with CBC and LBC, respectively for the first time, and thoroughly analyzed the adsorption and degradation processes within the reaction system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!