[Sex chromosomes and male infertility].

Zhonghua Nan Ke Xue

Center of Reproduction and Genetics, PLA Research Institute of Clinical Laboratory Medicine, Nanjing University School of Medicine/Nanjing General Hospital of Nanjing Military Region, Nanjing, Jiangsu 210002, China.

Published: May 2010

AI Article Synopsis

  • Male infertility is a global issue often linked to genetic factors, particularly involving the sex chromosomes, with the Y chromosome being crucial for sperm production and male reproductive development.
  • Y chromosome microdeletions, especially in the azoospermia factor (AZF) region, are the most common genetic causes of male infertility, impacting several critical genes for spermatogenesis.
  • The role of the X chromosome in male fertility is also important due to its germ cell-specific genes, but the mechanisms and effects of X-linked mutations on infertility require more research for better understanding.

Article Abstract

Male infertility is a worldwide problem, with a variety of causes including genetic factors. Sex chromosomes are particularly interesting, as males only have a single copy of both chromosomes. The Y chromosome is obviously an area of interest in the study of male-factor infertility because it contains many of the genes that are critical for spermatogenesis and the development of male gonads. Y chromosome microdeletions are the most commonly known genetic causes of spermatogenic failure in males. The azoospermia factor (AZF) region is a particular area on the long arm of the Y chromosome, Yq, where microdeletions occur most frequently. Fourteen Y chromosome genes encoding putatively functional proteins and expressed in the human testis are found to be located in one of the three AZF intervals. The exact role of specific AZF genes in spermatogenesis is largely unknown, for each of the most classical Yq deletions removes multiple genes. The importance of the X chromosome in mammalian spermatogenesis is suggested by its enrichment of germ cell-specific genes expressed in spermatogenesis, such as AR, USP26, TAF7L, TEX11, KAL1, AKAP4, and NXF2. Genes on the X chromosome may be under unique evolutionary pressure due to their hemizygous expression in male. The mutations in the single copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. Many researches have been conducted on the relationship between spermatogenesis and the genes on the X chromosome, but the involvement of the X chromosome in male infertility remains less understood and deserves further characterization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

genes chromosome
12
genes
9
male infertility
8
single copy
8
chromosome
8
chromosome microdeletions
8
male
5
spermatogenesis
5
[sex chromosomes
4
chromosomes male
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Ewing's sarcoma of the head and neck: differential diagnosis, treatment and outcomes.

Curr Opin Otolaryngol Head Neck Surg

December 2024

Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, HBNI, Parel, Mumbai.

Purpose Of Review: Ewing's sarcoma is a small round-cell tumour typically arising in the bones, and only rarely affecting soft tissues. These are rarely seen in the head and neck comprising 1-9% of all cases, making management of these tumours a challenge. This review aims to review the current literature to update the current diagnostic and treatment options in head and neck Ewing's sarcoma.

View Article and Find Full Text PDF

The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!