Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current work is aimed at understanding the structure and functionality of thiamine binding protein (TBP) in neural cells plasma membranes. The influence of thiamine triphosphate on thiamine binding by TBP in synaptic plasma membranes (SPM) isolated from the rat brain was investigated. It was shown that thiamine triphosphate inhibits thiamine binding activity of SPM in concurrent manner (K(i) = 1.0 +/- 0.3 microM). At the same time thiamine had no effect on thiamine triphosphatase (ThTPase) activity at the concentration range 0.5-20 microM. Otherwise, ThTPase activation with the maximum at the concentration about 2.5 microM was observed. Further, the influence of classic thiamine antagonists (amprolium, oxythiamine and pyrithiamine) on both biological activities of TBP in SPM was studied. The IC50 value for inhibition of thiamine binding on SPM by amprolium comprised 50 +/- 4.0 microM. Still, this antagonist had no effect on ThTPase activity. For the oxythiamine inhibition of both TBP activities was detected. The values of IC50 were 125 +/- 28 and 1000 +/- 95 microM for thiamine binding and ThTPase activity, respectively. The values of IC50 for thiamine binding and ThTPase activity inhibition differed by more than one order of magnitude and comprised 2.2 +/- 0.2 and 43 +/- 9 microM, respectively. The obtained data indicate that the active sites on SPM responsible for thiamine binding and ThTPase activity have different sensitivity to thiamine antagonists. Our results allow us to suppose that different active protein sites are responsible for the specific binding and for thiamine phosphates hydrolysis by TBP of synaptic membranes.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!